References
- S. Albeverio, M. Pratsiovytyi, and G. Torbin, Topological and fractal properties of real numbers which are not normal, Bull. Sci. Math. 129 (2005), no. 8, 615-630. https://doi.org/10.1016/j.bulsci.2004.12.004
- I. S. Baek and L. Olsen, Baire category and extremely non-normal points of invariant sets of IFS's, Discrete Contin. Dyn. Syst. 27 (2010), no. 3, 935-943. https://doi.org/10.3934/dcds.2010.27.935
- L. Barreira, J. J. Li, and C. Valls, Irregular sets are residual, Tohoku Math. J. 66 (2014), no. 4, 471-489. https://doi.org/10.2748/tmj/1432229192
- L. Barreira, J. J. Li, and C. Valls, Irregular sets of two-sided Birkhoff averages and hyperbolic sets, Ark. Mat. 54 (2016), no. 1, 13-30. https://doi.org/10.1007/s11512-015-0214-2
- L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension, Israel J. Math. 116 (2000), 29-70. https://doi.org/10.1007/BF02773211
- C. Bonatti, L. Diaz, and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Springer-Verlag, 2005.
- E. C. Chen, K. Tassilo, and L. Shu, Topological entropy for divergence points, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1173-1208. https://doi.org/10.1017/S0143385704000872
- M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Space, volume 527 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1976.
- A. H. Fan and D.-J. Feng, On the distribution of long-term time averages on symbolic space, J. Stat. Phys. 99 (2000), no. 3-4, 813-856. https://doi.org/10.1023/A:1018643512559
- A. H. Fan, D.-J. Feng, and J. Wu, Recurrence, dimensions and entropies, J. London Math. Soc. 64 (2001), no. 1, 229-244. https://doi.org/10.1017/S0024610701002137
- D.-J. Feng, K.-S. Lau, and J. Wu, Ergodic limits on the conformal repellers, Adv. Math. 169 (2002), no. 1, 58-91. https://doi.org/10.1006/aima.2001.2054
- J. Hyde, V. Laschos, L. Olsen, I. Petrykiewicz, and A. Shaw, Iterated Cesaro averages, frequencies of digits and Baire category, Acta Arith. 144 (2010), no. 3, 287-293. https://doi.org/10.4064/aa144-3-6
- T. Jordan, V. Naudot, and T. Young, Higher order Birkhoff averages, Dyn. Syst. 24 (2009), no. 3, 299-313. https://doi.org/10.1080/14689360802676269
- J. J. Li and M. Wu, Divergence points in systems satisfying the specification property, Discrete Contin. Dyn. Syst. 33 (2013), no. 2, 905-920. https://doi.org/10.3934/dcds.2013.33.905
- J. J. Li and M. Wu, The sets of divergence points of self-similar measures are residual, J. Math. Anal. Appl. 404 (2013), no. 2, 429-437. https://doi.org/10.1016/j.jmaa.2013.03.043
- J. J. Li and M. Wu, Generic property of irregular sets in systems satisfying the specification property, Discrete Contin. Dyn. Syst. 34 (2014), 635-645.
- J. J. Li and M. Wu, Points with maximal Birkhoff average oscillation, Czechoslovak Math. J. 66(141) (2016), no. 1, 223-241.
- J. J. Li, M. Wu, and Y. Xiong, Hausdorff dimensions of the divergence points of self-similar measures with the open set condition, Nonlinearity 25 (2012), no. 1, 93-105. https://doi.org/10.1088/0951-7715/25/1/93
- M. Madritsch, Non-normal numbers with respect to Markov partitions, Discrete Contin. Dyn. Syst. 34 (2014), no. 2, 663-676. https://doi.org/10.3934/dcds.2014.34.663
- L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl. 82 (2003), no. 12, 1591-1649. https://doi.org/10.1016/j.matpur.2003.09.007
- L. Olsen, Extremely non-normal numbers, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 1, 43-53. https://doi.org/10.1017/S0305004104007601
- L. Olsen, Higher order local dimensions and Baire category, Studia Math. 211 (2011), no. 1, 1-20. https://doi.org/10.4064/sm211-1-1
- J. C. Oxtoby, Measre and Category, Springer, New York, 1996.
- Y. Pesin and B. S. Pitskel, Topological pressure and variational principle for non-compact sets, Functional Anal. Appl. 18 (1984), 307-318. https://doi.org/10.1007/BF01083692
- M. Pollicott and H. Weiss, Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation, Comm. Math. Phys. 207 (1999), no. 1, 145-171. https://doi.org/10.1007/s002200050722
- D. Ruelle, Thermodynamic Formalism: The mathematical structures of classical equilibrium statistical mechanics, Ency. Math. and Appl. Vol 5, Addison Wesley, 1978.
- D. Thompson, The irregular set for maps with the specification property has full topological pressure, Dyn. Syst. 25 (2010), no. 1, 25-51. https://doi.org/10.1080/14689360903156237