References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 267. Springer-Verlag, New York, 1985.
- H. C. Chang, On plane algebraic curves, Chinese J. Math. 6 (1978), no. 2, 185-189.
- M. Coppens and T. Kato, The Weierstrass gap sequence at an inflection point on a nodal plane curve, aligned inflection points on plane curves, Boll. Un. Mat. Ital. B. (7) 11 (1997), no. 1, 1-33.
- S. Fukasawa, Galois points for a plane curve in arbitrary characteristic, Geom. Dedicata 139 (2009), 211-218. https://doi.org/10.1007/s10711-008-9325-2
- S. Fukasawa, On the number of Galois points for a plane curve in positive characteristic. III, Geom. Dedicata 146 (2010), 9-20. https://doi.org/10.1007/s10711-009-9422-x
- T. Kato, On the order of a zero of the theta function, Kodai Math. Sem. Rep. 28 (1976/77), no. 4, 390-407. https://doi.org/10.2996/kmj/1138847520
- S. J. Kim and J. Komeda, Numerical semigroups which cannot be realized as semigroups of Galois Weierstrass points, Arch. Math. (Basel) 76 (2001), no. 4, 265-273. https://doi.org/10.1007/s000130050568
- S. J. Kim and J. Komeda, The Weierstrass semigroup of a pair of Galois Weierstrass points with prime degree on a curve, Bull. Braz. Math. Soc. (N.S.) 36 (2005), no. 1, 127-142. https://doi.org/10.1007/s00574-005-0032-4
-
S. J. Kim and J. Komeda, The Weierstrass semigroups on the quotient curve of a plane curve of degree
${\leq}$ 7 by an involution, J. Algebra 322 (2009), no. 1, 137-152. https://doi.org/10.1016/j.jalgebra.2009.03.023 - K. Miura and H. Yoshihara, Field theory for function fields of plane quartic curves, J. Algebra 226 (2000), no. 1, 283-294. https://doi.org/10.1006/jabr.1999.8173
- K. Miura and H. Yoshihara, Field theory for the function field of the quintic Fermat curve, Comm. Algebra 28 (2000), no. 4, 1979-1988. https://doi.org/10.1080/00927870008826940
- I. Morrison and H. Pinkham, Galois Weierstrass points and Hurwitz characters, Ann. Math. (2) 124 (1986), no. 3, 591-625. https://doi.org/10.2307/2007094
- F. Torres, Weierstrass points and double coverings of curves. With application: symmetric numerical semigroups which cannot be realized as Weierstrass semigroups, Manuscripta Math. 83 (1994), no. 1, 39-58. https://doi.org/10.1007/BF02567599
- H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra 239 (2001), no. 1, 340-355. https://doi.org/10.1006/jabr.2000.8675