Acknowledgement
Supported by : Soochow University, National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province, Natural Science Foundation of Suzhou
References
- Ashley, H. and Haviland, G. (1950), "Bending vibrations of a pipe line containing flowing fluid", J. Appl. Mech.-ASME, 17, 229-232.
- Duan, W.H. and Wang, C.M. (2007), "Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory", Nanotechnology, 18, 385704. https://doi.org/10.1088/0957-4484/18/38/385704
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Farajpour, A., Yazdi, M.R.H., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039
- Farokhi, H., Ghayesh, M.H. and Hussain, S. (2016), "Threedimensional nonlinear global dynamics of axially moving viscoelastic beams", J. Vib. Acoust., 138(1), 011007. https://doi.org/10.1115/1.4031600
- He, J. and Lilley, C.M. (2008), "Surface stress effect on bending resonance of nanowires with different boundary conditions", Appl. Phys. Lett., 93, 263108. https://doi.org/10.1063/1.3050108
- He, L.H. and Lim, C.W. (2006), "Surface Green function for a soft elastic half-space: influence of surface stress", Int. J. Solids Struct., 43(1), 132-143. https://doi.org/10.1016/j.ijsolstr.2005.04.026
- Heireche, H., Tounsi, T. and Benzair, A. (2008), "Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnology, 19, 185703. https://doi.org/10.1088/0957-4484/19/18/185703
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023
- Kurki, M., Jeronen, J., Saksa, T. and Tuovinen, T. (2016), "The origin of in-plane stresses in axially moving orthotropic continua", Int. J. Solids Struct., 81, 43-62. https://doi.org/10.1016/j.ijsolstr.2015.10.027
- Li, C. (2013), "Size-dependent thermal behaviors of axially traveling nanobeams based on a strain gradient theory", Struct. Eng. Mech., 48(3), 415-434. https://doi.org/10.12989/sem.2013.48.3.415
- Li, C. (2014), "A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries", Compos. Struct., 118, 607-621. https://doi.org/10.1016/j.compstruct.2014.08.008
- Li, C., Li, S., Yao, L.Q. and Zhu, Z.K. (2015), "Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models", Appl. Math. Model., 39, 4570-4585. https://doi.org/10.1016/j.apm.2015.01.013
- Lim, C.W. (2010), "On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection", Appl. Math. Mech., 31(1), 37-54. https://doi.org/10.1007/s10483-010-0105-7
- Lim, C.W., Li, C. and Yu, J.L. (2010), "Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach", Acta Mech. Sinica, 26(5), 755-765. https://doi.org/10.1007/s10409-010-0374-z
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Liu, J.J., Chen, L., Xie, F., Fan, X.L. and Li, C. (2016), "On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory", Smart Struct. Syst., 17(2), 257-274. https://doi.org/10.12989/sss.2016.17.2.257
- Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2006), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99, 073510. https://doi.org/10.1063/1.2189213
- Marynowski, K. and Kapitaniak, T. (2002), "Kelvin-Voigt versus Burgers internal damping in modeling of axially moving viscoelastic web", Int. J. Non-Linear Mech., 37(7), 1147-1161. https://doi.org/10.1016/S0020-7462(01)00142-1
- Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11, 139-147. https://doi.org/10.1088/0957-4484/11/3/301
- Mote Jr, C.D. (1965), "A study of band saw vibrations", J. Franklin Institute, 279(6), 430-444. https://doi.org/10.1016/0016-0032(65)90273-5
- Oz, H.R. and Pakdemirli, M. (1999), "Vibrations of an axially moving beam with time-dependent velocity", J. Sound Vib., 227(2), 239-257. https://doi.org/10.1006/jsvi.1999.2247
- Pakdemirli, M. and Oz, H.R. (2008), "Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations", J. Sound Vib., 311(3-5), 1052-1074. https://doi.org/10.1016/j.jsv.2007.10.003
- Peddieson, J., Buchanan, G.G. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Pellicano, F. and Zirilli, F. (1998), "Boundary layers and nonlinear vibrations in an axially moving beam", Int. J. Non-Linear Mech., 33(4), 691-711. https://doi.org/10.1016/S0020-7462(97)00044-9
- Rezaee, M. and Lotfan, S. (2015), "Non-linear nonlocal vibration and stability analysis of axially moving nanoscale beams with time-dependent velocity", Int. J. Mech. Sci., 96-97, 36-46. https://doi.org/10.1016/j.ijmecsci.2015.03.017
- Sharabiani, P.A. and Yazdi, M.R.H. (2013), "Nonlinear free vibrations of functionally graded nanobeams with surface effects", Compos. Part B: Eng., 45, 581-586. https://doi.org/10.1016/j.compositesb.2012.04.064
- Skutch, R. (1897), "Uber die Bewegung eines gespannten Fadens, weicher gezwungen ist durch zwei feste Punkte, mit einer constanten Geschwindigkeit zu gehen, und zwischen denselben in Transversal-schwingungen von gerlinger Amplitude versetzt wird", Annalen der Physik und Chemie, 61, 190-195. (in German)
- Wang, G.F. and Feng, X.Q. (2007), "Effects of surface elasticity and residual surface tension on the natural frequency of microbeams", Appl. Phys. Lett., 90, 231904. https://doi.org/10.1063/1.2746950
- Wang, G.F. and Feng, X.Q. (2009a), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94, 141913. https://doi.org/10.1063/1.3117505
- Wang, G.F. and Feng, X.Q. (2009b), "Timoshenko beam model for buckling and vibration of nanowires with surface effects", J. Phys. D: Appl. Phys., 42, 155411. https://doi.org/10.1088/0022-3727/42/15/155411
- Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15(2), 659-666. https://doi.org/10.1088/0964-1726/15/2/050
- Wickert, J.A. (1992), "Non-linear vibration of a traveling tensioned beam", Int. J. Non-Linear Mech., 27(3), 503-517. https://doi.org/10.1016/0020-7462(92)90016-Z
- Yang, X.D., Zhang, W. And Chen, L.Q. (2013), "Transverse vibrations and stability of axially traveling sandwich beam with soft core", J. Vib. Acoust., 135(5), 051013. https://doi.org/10.1115/1.4023951
- Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Revi. B, 70, 205430. https://doi.org/10.1103/PhysRevB.70.205430
Cited by
- A reformulation of mechanics and electrodynamics vol.3, pp.7, 2017, https://doi.org/10.1016/j.heliyon.2017.e00365
- Nonlinear resonance responses of geometrically imperfect shear deformable nanobeams including surface stress effects vol.97, 2017, https://doi.org/10.1016/j.ijnonlinmec.2017.09.007
- Studies on the dynamic stability of an axially moving nanobeam based on the nonlocal strain gradient theory vol.32, pp.16, 2018, https://doi.org/10.1142/S0217984918501671
- Vibration of deploying rectangular cross-sectional beam made of functionally graded materials pp.2048-4046, 2018, https://doi.org/10.1177/1461348418765957
- Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates vol.20, pp.5, 2017, https://doi.org/10.12989/sss.2017.20.5.573
- Nonlocal elasticity approach for free longitudinal vibration of circular truncated nanocones and method of determining the range of nonlocal small scale vol.21, pp.3, 2017, https://doi.org/10.12989/sss.2018.21.3.279
- Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles vol.27, pp.2, 2017, https://doi.org/10.12989/scs.2018.27.2.201
- A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2017, https://doi.org/10.12989/sss.2018.21.4.397
- Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205
- Vibration of nonlocal perforated nanobeams with general boundary conditions vol.25, pp.4, 2017, https://doi.org/10.12989/sss.2020.25.4.501
- Stability of perforated nanobeams incorporating surface energy effects vol.35, pp.4, 2020, https://doi.org/10.12989/scs.2020.35.4.555
- Bifurcation and chaos of axially moving nanobeams considering two scale effects based on non-local strain gradient theory vol.35, pp.27, 2017, https://doi.org/10.1142/s0217984921400108
- Size-dependent vibration of single-crystalline rectangular nanoplates with cubic anisotropy considering surface stress and nonlocal elasticity effects vol.170, pp.None, 2022, https://doi.org/10.1016/j.tws.2021.108518