DOI QR코드

DOI QR Code

Detecting width-wise partial delamination in the composite beam using generalized fractal dimension

  • Kumar, S. Keshava (Department of Aerospace Engineering, Indian Institute of Science Bangalore) ;
  • Ganguli, Ranjan (Department of Aerospace Engineering, Indian Institute of Science Bangalore) ;
  • Harursampath, Dineshkumar (Department of Aerospace Engineering, Indian Institute of Science Bangalore)
  • Received : 2016.01.20
  • Accepted : 2016.10.18
  • Published : 2017.01.25

Abstract

Generalized fractal dimension is used to detect the presence of partial delamination in a composite laminated beam. The effect of boundary conditions and location of delamination on the fractal dimension curve is studied. Appropriability of higher mode shape data for detection of delamination in the beam is evaluated. It is shown that fractal dimension measure can be used to detect the presence of partial delamination in composite beams. It is found that the torsional mode shape is well suited for delamination detection in beams. First natural frequency of delaminated beam is found to be higher than the healthy beam for certain small and partial width delaminations and some boundary conditions. An explanation towards this counter intuitive phenomenon is provided.

Keywords

References

  1. Bai, R., Ostachowicz, W., Radzienski, M. and Cao, M. (2014a), "Vibrational damage detection using fractal surface singularities with noncontact laser measurement". J. Vib. Control, 1-13.
  2. Bai, R.B., Ostachowicz, W., Cao, M.S. and Su, Z. (2014b), "Crack detection in beams in noisy conditions using scale fractal dimension analysis of mode shapes", Smart Mater. Struct., 23(6).
  3. Bai, R.B., Song, X.G., Radzienski, M., Cao, M.S., Ostachowicz, W. and Wang, S.S. (2014), "Crack location in beams by data fusion of fractal dimension features of laser-measured operating deflection shapes", Smart Struct. Syst., 13(6), 975-991. https://doi.org/10.12989/sss.2014.13.6.975
  4. Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis. Prentice Hall.
  5. Cao, M.S., Ostachowicz, W., Bai, R.B. and Radzienski, M. (2013), "Fractal mechanism for characterizing singularity of mode shape for damage detection", Appl. Phys. Lett., 103, 221906. https://doi.org/10.1063/1.4833837
  6. Chandrupatla, T.R. and Belegundu, A.D. (2002), Introduction to Finite Elements in Engineering. Pearson Education.
  7. Chang, F. and Kutlu, Z. (1989), "Response of composite shells containing a delamination", Appl. Mech. Rev., 40(11), 48-53.
  8. Della, C.N. and Shu, D. (2007), "Vibration of delaminated composite laminates: A review", Appl. Mech. Rev., 60(1), 1-20. https://doi.org/10.1115/1.2375141
  9. Fan, W. and Qiao, P. (2010), "Vibration-based damage identification methods: A review and comparative study", Struct. Health Monit., 10(1), 83-111.
  10. Farhidzadeh, A., Dehghan-Niri, E., Moustafa, A., Salamone, S. and Whittater, A. (2013), "Damage assessment of reinforced concrete structures using fractal analysis of residual crack patterns", Exp. Mech., 53(9), 1607-1619. https://doi.org/10.1007/s11340-013-9769-7
  11. Gayathri, P., Umesh, K. and Ganguli, R. (2010), "Effect of matrix cracking and material uncertainty on composite plates", Reliab. Eng. Syst. Saf., 95(7), 716-728. https://doi.org/10.1016/j.ress.2010.02.004
  12. Guruprasad, P.J. (2005), Cross-sectional analysis of a pretwisted anisotropic strip in the presence of delamination. Master's thesis, Indian Institute of Science, Bangalore.
  13. Hadjileontiadis, L.J. and Douka, E. (2007), "Crack detection in plates using fractal dimension", Eng. Struct., 29, 1612-1625. https://doi.org/10.1016/j.engstruct.2006.09.016
  14. Hadjileontiadis, L.J., Douka, E. and Trochidis, A. (2005), "Fractal dimension analysis for crack identification in beam structures", Mech. Syst. Signal Pr., 19, 659-674. https://doi.org/10.1016/j.ymssp.2004.03.005
  15. Hakim, S.J.S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks-a review", Smart Struct. Syst., 14(2), 159-189. https://doi.org/10.12989/sss.2014.14.2.159
  16. Hou, J.P. and Jeronimidis, G. (1999), "Vibration of thin composite plates", Compos. : Part A, 30, 989-995. https://doi.org/10.1016/S1359-835X(99)00008-1
  17. Jefferson, B. and Jarvis, P.R. (2006), Interface Science in Drinking Water Treatment, volume 10, Elsevier.
  18. Jones, R.M. (1999), Mechanics of composite materials. Taylor & Francis, 2nd Ed.
  19. Jun, L., Hongxing, H. and Rongying, S. (2008), "Dynamic finite element method for generally laminated composite beams", Int. J. Mech. Sci., 50(3), 466-480. https://doi.org/10.1016/j.ijmecsci.2007.09.014
  20. Katz, M.J. (1987), "Fractals and the analysis of waveforms", Comput. Biology Medicine, 18(3), 145-156. https://doi.org/10.1016/0010-4825(88)90041-8
  21. Kaveh, A. and Maniat, M. (2015), "Damage detection based on mcss and pso using modal data", Smart Struct. Syst., 15(5), 1253-1270. https://doi.org/10.12989/sss.2015.15.5.1253
  22. Keshava Kumar, S., Ganguli, R. and Harursampath, D. (2013), "Partial delamination modeling in composite beams using a finite element method", Finite Elem. Anal. Des., 76, 1-12. https://doi.org/10.1016/j.finel.2013.07.007
  23. Keshava Kumar, S., Ganguli, R. and Harursampath, D. (2015), "Partial delamination detection in rotating beam using generalized fractal dimensions", Proceedings of the 4th Asian Australian Rotorcraft Forum.
  24. Kornev, V.M., Kurguzov, V.D, and Astapov, N.S. (2012), "Fracture model of bimaterial under delamination of elasto-plastic structured media", Appl. Compos. Mater., 20, 129-143.
  25. Lee, J. (2001), "Center of gravity and shear center of thin-walled open-section composite beams", Compos. Struct., 52, 255-260. https://doi.org/10.1016/S0263-8223(00)00177-X
  26. Lee, J. and Kim, S.E. (2001), "Flexural-torsional buckling of thinwalled i-section composites", Comput. Struct., 79, 987-995. https://doi.org/10.1016/S0045-7949(00)00195-4
  27. Lin, X. and Zhang, Y. (2011), "A novel one-dimensional two-node shear-flexible layered composite beam element", Finite Elemen. Anal. Des., 47(7), 676-682. https://doi.org/10.1016/j.finel.2011.01.010
  28. Moustafa, A. and Salamone, S. (2012), "Fractal dimension-based lamb wave tomography algorithm for damage detection in platelike structures", J. Intel. Mat. Syst. Str., 23(11), 1269-1276. https://doi.org/10.1177/1045389X12445648
  29. Pawar, P.M. and Ganguli, R. (2003), "Genetic fuzzy system for damage detection in beams and helicopter rotor blades", Comput. Method. Appl. M., 192, 2031-2057. https://doi.org/10.1016/S0045-7825(03)00237-8
  30. Prasad, P.S. and Harursampath, D. (2012), "Closed-form nonlinear sectional analysis of pretwisted anisotropic beam with multiple delaminations", Proceedings of the International Conference on Mechanics of Nano, Micro, Macro Composite Structures (ICMNMMCS), Torino, Italy.
  31. Qiao, P., Lestari, W., Shah, M.G. and Wang, J. (2007), "Dynamics based damage detection of composite laminated beams using contact and noncontact measurement system", J. Compos. Mater., 41(10), 1217-1252. https://doi.org/10.1177/0021998306067306
  32. Raghavendra, B.S. and Dutt, D.N. (2009), "A note on fractal dimensions of biomedical waveforms", Comput. Biology Medicine, 39, 1006-1012. https://doi.org/10.1016/j.compbiomed.2009.08.001
  33. Rahmatalla, S., Eun, H.C. and Lee, E.T. (2012), "Damage detection from the variation of parameter matrices estimated by incomplete frf data", Smart Struct. Syst., 9(1), 55-70. https://doi.org/10.12989/sss.2012.9.1.055
  34. Reddy, J.N. (1997), "On locking-free shear deformable beam finite elements", Comput. Method. Appl. M., 149, 113-132. https://doi.org/10.1016/S0045-7825(97)00075-3
  35. Senthil, K., Arockiarajan, A., Palaninathan, R., Santhosh, B. and Usha, K.M. (2013), "Defects in composite structures: Its effects and prediction methods-a comprehensive review", Compos. Struct., 106, 139-149. https://doi.org/10.1016/j.compstruct.2013.06.008
  36. Sheik, A.H. and Thomsen, O.T. (2008), "An efficient beam element for the analysis of laminated composite beams of thinwalled open and closed cross sections", Compos. Sci. Technol., 68, 2273-2281. https://doi.org/10.1016/j.compscitech.2008.04.018
  37. Shen, M.H.H. and Grady, J.E. (1992), "Free vibrations of delaminated beams", AIAA J., 30(5), 1361-1370. https://doi.org/10.2514/3.11072
  38. Swanson, S.R. (1998), "Torsion of laminated rectangular rods", Compo. Struct., 42, 23-31. https://doi.org/10.1016/S0263-8223(98)00055-5
  39. Theiler, J. (1990), "Estimating fractal dimension", J. Opt. Soc. Am., 7(6), 1055-1073. https://doi.org/10.1364/JOSAA.7.001055
  40. Tracy, J.J. and Pardoen, G.C. (1989), "Effect of delamination on the natural frequencies of composite laminates", J. Compos. Mater., 23, 1200-1215. https://doi.org/10.1177/002199838902301201
  41. Umesh, K. and Ganguli, R. (2009), "Shape and vibration control of a smart composite plate with matrix cracks", Smart Mater. Struct., 18(2), 025002. https://doi.org/10.1088/0964-1726/18/2/025002
  42. Venkatesh, G., Ponnusami, S.A. and Harursampath, D. (2012), "Delamination studies on composite laminates-an asymptotic approach", Proceedings of the European solid mechanics conference, Graz, Austria.
  43. Wang, J. and Qiao, P. (2007), "Improved damage detection for beam-type structures using a uniform load surface", Struct. Health Monit., 6(2), 99-110. https://doi.org/10.1177/1475921706072062
  44. Xiang, J., Nackenhorst, U., Wang, Y., Jiang, Y., Gao, H. and He, Y. (2014), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397
  45. Zou, Y., Tong, L. and Steven, G. (2000), "Vibration-based modeldependent damage (delamination) identification and health monitoring for composite structures-a review", J. Sound Vib., 230(2), 357-378. https://doi.org/10.1006/jsvi.1999.2624

Cited by

  1. SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE AND FRACTAL DIMENSION FOR IDENTIFYING MULTIPLE SCLEROSIS vol.25, pp.04, 2017, https://doi.org/10.1142/S0218348X17400102
  2. Delamination identification of laminated composite plates using measured mode shapes vol.23, pp.2, 2017, https://doi.org/10.12989/sss.2019.23.2.195