References
- Abdelkefi, A. (2012), "Global nonlinear analysis of piezoelectric energy harvesting from ambient and aeroelastic vibrations", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
- Abdelkefi, A. (2016), "Aeroelastic energy harvesting: A review", IJES, 100, 112-135.
- Abdelkefi, A. and Hajj, M.R. (2013), "Performance enhancement of wing-based piezoaeroelastic energy harvesting through freeplay nonlinearity", Theor. Appl. Mech. Lett., 3(4), 041001. https://doi.org/10.1063/2.1304101
- Abdelkefi, A., Hajj M.R. and Nayfeh A.H. (2012a), "Sensitivity analysis of piezoaeroelastic energy harvesters", J. Intel. Mat. Syst. Str., 23(13), 1523-1531. https://doi.org/10.1177/1045389X12440752
- Abdelkefi, A., Hajj M.R. and Nayfeh A.H. (2012b), "Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders", Nonlinear Dynam., 70(2), 1377-1388. https://doi.org/10.1007/s11071-012-0540-x
- Abdelkefi, A., Hajj, M.R. and Nayfeh, A.H. (2012c), "Power harvesting from transverse galloping of square cylinder", Nonlinear Dynam., 70(2), 1355-1363. https://doi.org/10.1007/s11071-012-0538-4
- Abdelkefi, A., Hajj, M.R. and Nayfeh, A.H. (2013d), "Piezoelectric energy harvesting from transverse galloping of bluff bodies", Smart Mater. Struct., 22(1), 015014. https://doi.org/10.1088/0964-1726/22/1/015014
- Abdelkefi, A., Nayfeh, A. and Hajj, M. (2012a), "Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation", Nonlinear Dynam., 67(2), 1221-1232. https://doi.org/10.1007/s11071-011-0064-9
- Abdelkefi, A., Nayfeh, A.H. and Hajj, M.R. (2012b), "Modeling and analysis of piezoaeroelastic energy harvesters", Nonlinear Dynam., 67(2), 925-939. https://doi.org/10.1007/s11071-011-0035-1
- Abdelkefi, A., Nayfeh, A.H. and Hajj, M.R. (2012c), "Design of piezoaeroelastic energy harvesters", Nonlinear Dynam., 68(4), 519-530. https://doi.org/10.1007/s11071-011-0233-x
- Abdelkefi, A., Nayfeh, A.H. and Hajj M.R. (2012d), "Enhancement of power harvesting from piezoaeroelastic systems", Nonlinear Dynam., 68(4), 531-541. https://doi.org/10.1007/s11071-011-0234-9
- Abdelkefi, A., Scanlon, J.M., Mcdowell, E. and Hajj, M.R. (2013), "Performance enhancement of piezoelectric energy harvesters from wake galloping", Appl. Phys. Lett., 103(3), 033903. https://doi.org/10.1063/1.4816075
- Abdelkefi, A., Vasconcellos, R., Marques, F.D. and Hajj, M.R. (2012d), "Bifurcation analysis of an aeroelastic system with concentrated nonlinearities", Nonlinear Dynam., 69(1-2), 57-70. https://doi.org/10.1007/s11071-011-0245-6
- Abdelkefi, A., Yan, Z. and Hajj, M.R. (2013b), "Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping", Smart Mater. Struct., 22(2), 025016. https://doi.org/10.1088/0964-1726/22/2/025016
- Akaydin, H.D. (2012), "Piezoelectric energy harvesting from fluid flow", Ph.D. Dissertation, City University of New York.
- Akaydin, H.D., Elvin, N. and Andreopoulos, Y. (2010a), "Energy harvesting from highly unsteady fluid flows using piezoelectric materials", J. Intel. Mat. Syst. Str., 21(13), 1263-1278. https://doi.org/10.1177/1045389X10366317
- Akaydin, H.D., Elvin, N. and Andreopoulos, Y. (2010b), "Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials", Exp. Fluids, 49(1), 291-304. https://doi.org/10.1007/s00348-010-0871-7
- Akaydin, H.D., Elvin, N. and Andreopoulos, Y. (2012), "The performance of a self-excited fluidic energy harvester", Smart Mater. Struct., 21(2), 025007. https://doi.org/10.1088/0964-1726/21/2/025007
- ANSYS CFX. Retrieved December 10, 2014, from http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX
- ANSYS Fluent. Retrieved December 10, 2014, from http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent
- Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003-2006)", Smart Mater. Struct., 16(3), 1-21. https://doi.org/10.1088/0964-1726/16/1/001
- Au-Yang, M.K. (2001), Flow-induced vibration of power and process plant components : a practical workbook (1st ed.), ASME Press, New York, NY.
- Balakrishnan, A.V. (2012), Aeroelasticity-Continuum Theory, Springer-Verlag New York, New York, NY.
- Balasubramanian, S., Skop, R., Haan, F. and Szewczyk, A. (2000), "Vortex-excited vibrations of uniform pivoted cylinders in uniform and shear flow", JFS, 14(1), 65-85.
- Bansal, A., Howey, D. and Holmes, A. (2009), "CM-scale air turbine and generator for energy harvesting from low-speed flows", Proceedings of the Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International.
- Barrero-Gil, A., Alonso, G. and Sanz-Andres, A. (2010), "Energy harvesting from transverse galloping", J. Sound Vib., 329(14), 2873-2883. https://doi.org/10.1016/j.jsv.2010.01.028
- Barrero-Gil, A., Pindado, S. and Avila, S. (2012), "Extracting energy from Vortex-Induced Vibrations: A parametric study", Appl. Math. Modell., 36(7), 3153-3160. https://doi.org/10.1016/j.apm.2011.09.085
- Beeby, S.P., Tudor, M.J. and White, N.M. (2006), "Energy harvesting vibration sources for microsystems applications", Meas. Sci. Technol., 17(12), 175-195. https://doi.org/10.1088/0957-0233/17/12/R01
- Bibo, A. (2014), "Investigation of concurrent energy harvesting from ambient vibrations and wind", Ph.D. Dissertation, Clemson University.
- Bibo, A. and Daqaq, M.F. (2013a), "Energy harvesting under combined aerodynamic and base excitations", J. Sound Vib., 332(20), 5086-5102. https://doi.org/10.1016/j.jsv.2013.04.009
- Bibo, A. and Daqaq, M.F. (2013b), "Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator", Appl. Phys. Lett., 102(24), 243904. https://doi.org/10.1063/1.4811408
- Bibo, A. and Daqaq, M.F. (2014), "On the optimal performance and universal design curves of galloping energy harvesters", Appl. Phys. Lett., 104(2), 023901. https://doi.org/10.1063/1.4861599
- Bibo, A., Abdelkefi, A. and Daqaq, M.F. (2015), "Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations", J. Vib. Acoust., 137(3), 031017. https://doi.org/10.1115/1.4029611
- Bibo, A., Alhadidi, A.H. and Daqaq. M.F. (2015), "Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters", J. Appl. Phys., 117(4), 045103. https://doi.org/10.1063/1.4906463
- Bressers, S., Avirovik, D., Lallart, M., Inman, D.J. and Priya, S. (2011), Contact-less Wind Turbine Utilizing Piezoelectric Bimorphs with Magnetic Actuation, Springer, New York.
- Bressers, S., Vernier, C., Regan, J., Chappell, S., Hotze, M., Luhman, S., Avirovik, D. and Priya, S. (2010), "Small-scale modular wind turbine", Proceedings of SPIE, 764333.
- Bryant, M. (2012), "Aeroelastic flutter vibration energy harvesting: modeling, testing, and system eesign", Ph.D. Dissertation, Cornell University.
- Bryant, M. and Garcia, E. (2009), "Energy harvesting: a key to wireless sensor nodes", Proceedings of the 2nd International Conference on Smart Materials and Nanotechnology in Engineering, 74931W.
- Bryant, M. and Garcia, E. (2011), "Modeling and testing of a novel aeroelastic flutter energy harvester", J. Vib. Acoust., 133(1), 011010. https://doi.org/10.1115/1.4002788
- Bryant, M., Pizzonia, M., Mehallow, M. and Garcia, E. (2014), "Energy harvesting for self-powered aerostructure actuation", Proceedings of SPIE, 90570E.
- Bryant, M., Schlichting, A.D. and Garcia, E. (2013), "Toward efficient aeroelastic energy harvesting: device performance comparisons and improvements through synchronized switching", Proceedings of SPIE, 868807.
- Bryant, M., Shafer, M.W. and Garcia, E. (2012), "Power and efficiency analysis of a flapping wing wind energy harvester", Proceedings of SPIE, 83410E
- Bryant, M., Tse, R. and Garcia, E. (2012), "Investigation of host structure compliance in aeroelastic energy harvesting", Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems.
- Bryant, M., Wolff, E. and Garcia, E. (2011), "Parametric design study of an aeroelastic flutter energy harvester", Proceedings of SPIE, 79770S.
- Castagnetti, D. (2012), "Experimental modal analysis of fractalinspired multi-frequency structures for piezoelectric energy converters", Smart Mater. Struct., 21(9), 094009. https://doi.org/10.1088/0964-1726/21/9/094009
- Chen, C.T., Islam, R.A. and Priya, S. (2006), "Electric energy generator", IEEE T. Ultrason. Ferr., 53(3), 656-661. https://doi.org/10.1109/TUFFC.2006.1610576
- Chen, W.C. (1993), "A formulation of nonlinear limit cycle oscillation problems in aircraft flutter", Master Dissertation, Massachusetts Institute of Technology. Computational fluid dynamics, Wikipedia. Retrieved December 10, 2014, from http://en.wikipedia.org/wiki/Computational_fluid_dynamics
- COMSOL CFD Module. Retrieved December 10, 2014, from http://www.comsol.com/cfd-module
- Cook-Chennault, K., Thambi, N. and Sastry, A. (2008), "Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems", Smart Mater. Struct., 17(4), 043001. https://doi.org/10.1088/0964-1726/17/4/043001
- Dai, H., Abdelkefi, A., Javed, U. and Wang, L. (2015), "Modeling and performance of electromagnetic energy harvesting from galloping oscillations", Smart Mater. Struct., 24(4), 045012. https://doi.org/10.1088/0964-1726/24/4/045012
- Dai, H.L., Abdelkefi, A. and Wang, L. (2014a), "Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations", J. Intel. Mat. Syst. Str., 25(14), 1861-1874. https://doi.org/10.1177/1045389X14538329
- Dai, H.L., Abdelkefi, A. and Wang, L. (2014b), "Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations", Nonlinear Dynam., 77(3), 967-981. https://doi.org/10.1007/s11071-014-1355-8
- Daqaq, M.F., Masana, R., Erturk, A. and Quinn, D.D. (2014), "On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion", ApMRv, 66(4), 040801.
- Dat, R. and Tran, C. (1981), "Investigation of the stall flutter of an airfoil with a semi-empirical model of 2 D flow", ONERA, TP no. 1981-146, 1981. 11 p.
- De Marqui, C. and Erturk A. (2012), "Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction", J. Intel. Mat. Syst. Str., 24(7), 846-854. https://doi.org/10.1177/1045389X12461073
- De Marqui, C., Erturk, A. and Inman, D.J. (2010), "Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes", J. Intel. Mat. Syst. Str., 21(10), 983-993. https://doi.org/10.1177/1045389X10372261
- Den Hartog, J.P. (1956), Mechanical Vibrations, New York: McGraw-Hill.
- Dowell, E. (2015), A Modern Course in Aeroelasticity, Springer International Publishing.
- Dowell, E., Edwards, J. and Strganac, T. (2003), "Nonlinear aeroelasticity", JAir, 40(5), 857-874.
- Dugundji, J. (1992), "Nonlinear problems of aeroelasticity", Comput. Nonlinear Mech, Aerospace Eng., 1, 127-155.
- Dunn, P. and Dugundji, J. (1992), "Nonlinear stall flutter and divergence analysis of cantilevered graphite/epoxy wings", AIAA J., 30(1), 153-162. https://doi.org/10.2514/3.10895
- Dutoit, N.E., Wardle, B.L. and Kim, S.G. (2005), "Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters", InFer, 71(1), 121-160.
- El-Hami, M., Glynne-Jones, P., White, N., Hill, M., Beeby, S., James, E., Brown, A. and Ross, J. (2001), "Design and fabrication of a new vibration-based electromechanical power generator", Sensor. Actuat. A.-Phys., 92(1), 335-342. https://doi.org/10.1016/S0924-4247(01)00569-6
- Elvin, N.G. (2014), "Equivalent electrical circuits for advanced energy harvesting", J. Intel. Mat. Syst. Str., 25(14), 1715-1726. https://doi.org/10.1177/1045389X14521878
- Elvin, N.G. and Elvin, A.A. (2009a), "A general equivalent circuit model for piezoelectric generators", J. Intel. Mat. Syst. Str., 20(1), 3-9. https://doi.org/10.1177/1045389X08089957
- Elvin, N.G. and Elvin, A.A. (2009b), "A coupled finite element-circuit simulation model for analyzing piezoelectric energy generators", J. Intel. Mat. Syst. Str., 20(5), 587-595. https://doi.org/10.1177/1045389X08101565
- Elvin, N.G. and Elvin, A.A. (2011), "An experimentally validated electromagnetic energy harvester", J. Sound Vib., 330(10), 2314-2324. https://doi.org/10.1016/j.jsv.2010.11.024
- Erturk, A. (2009), "Electromechanical modeling of piezoelectric energy harvesters", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
- Erturk, A. and Inman, D.J. (2008a), "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters", J. Vib. Acoust., 130(4), 041002. https://doi.org/10.1115/1.2890402
- Erturk, A. and Inman, D.J. (2008b), "On mechanical modeling of cantilevered piezoelectric vibration energy harvesters", J. Intel. Mat. Syst. Str., 19(11), 1311-1325. https://doi.org/10.1177/1045389X07085639
- Erturk, A., Vieira, W., De Marqui, Jr C. and Inman, D. (2010), "On the energy harvesting potential of piezoaeroelastic systems", Appl. Phys. Lett., 96(18), 184103. https://doi.org/10.1063/1.3427405
- Ewere, F., Wang, G. and Cain, B. (2014), "Experimental investigation of galloping piezoelectric energy harvesters with square bluff bodies", Smart Mater. Struct., 23(10), 104012. https://doi.org/10.1088/0964-1726/23/10/104012
- Facchinetti, M.L., De Langre, E. and Biolley, F. (2002), "Vortex shedding modeling using diffusive van der Pol oscillators", Comptes Rendus Mecanique, 330(7), 451-456. https://doi.org/10.1016/S1631-0721(02)01492-4
- Facchinetti, M.L., De Langre, E. and Biolley, F. (2004), "Coupling of structure and wake oscillators in vortex-induced vibrations", JFS, 19(2), 123-140.
- Federspiel, C.C. and Chen, J. (2003), "Air-powered sensor", Proceedings of Sensors, 2003. Proceedings of IEEE, 22-25.
- Fung, Y.C. (1955), An introduction to the theory of aeroelasticity, John Wiley, New York, NY.
- Global wind energy council, wind in numbers. Retrieved November 4, 2014, from http://www.gwec.net/globalfigures/wind-in-numbers/
- Glynne-Jones, P., Tudor, M., Beeby, S. and White, N. (2004), "An electromagnetic, vibration-powered generator for intelligent sensor systems", Sensor. Actuat. A-Phys., 110(1), 344-349. https://doi.org/10.1016/j.sna.2003.09.045
- Gomez, J.C., Bryant, M. and Garcia, E. (2014), "Low-order modeling of the unsteady aerodynamics in flapping wings", JAir, 1-10.
- Harne, R. and Wang, K. (2013), "A review of the recent research on vibration energy harvesting via bistable systems", Smart Mater. Struct., 22(2), 023001. https://doi.org/10.1088/0964-1726/22/2/023001
- Hobbs, W.B. and Hu, D.L. (2012), "Tree-inspired piezoelectric energy harvesting", JFS, 28, 103-114.
- Hobeck, J.D. and Inman, D. (2012a), "Design and analysis of dual pressure probes for predicting turbulence-Induced vibration in low velocity flow", Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
- Hobeck, J.D. and Inman, D.J. (2012b), "Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration", Smart Mater. Struct., 21(10), 105024. https://doi.org/10.1088/0964-1726/21/10/105024
- Hobeck, J.D. (2014), "Energy harvesting with piezoelectric grass for autonomous self-sustaining sensor networks", Ph.D. Dissertation, The University of Michigan.
- Hobeck, J.D. and Inman, D.J. (2014), "A distributed parameter electromechanical and statistical model for energy harvesting from turbulence-induced vibration", Smart Mater. Struct., 23(11), 115003. https://doi.org/10.1088/0964-1726/23/11/115003
- Hobeck, J.D., Geslain, D. and Inman, D.J. (2014), "The dual cantilever flutter phenomenon: a novel energy harvesting method", Proceedings of SPIE, 906113.
- Hodges, D.H. and Pierce, G.A. (2002), Introduction to Structural Dynamics and Aeroelasticity (Vol. 15), Cambridge University Press.
- Howey, D., Bansal, A. and Holmes, A. (2011), "Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting", Smart Mater. Struct., 20(8), 085021. https://doi.org/10.1088/0964-1726/20/8/085021
- Huang, L. (1995), "Flutter of cantilevered plates in axial flow", JFS, 9(2), 127-147.
- Humdinger Wind Energy, Windbelt Innovation. Retrieved November 7, 2014, from http://www.humdingerwind.com
- Jeon, Y., Sood, R., Jeong, J.H. and Kim, S.G. (2005), "MEMS power generator with transverse mode thin film PZT", Sensor. Actuat. A.-Phys., 122(1), 16-22. https://doi.org/10.1016/j.sna.2004.12.032
- Jones, K.D., Davids, S. and Platzer, M.F. (1999), "Oscillatingwing power generator", Proceedings of the ASME/JSME joint fluids engineering conference.
- Jung, H.J. and Lee, S.W. (2011), "The experimental validation of a new energy harvesting system based on the wake galloping phenomenon", Smart Mater. Struct., 20(5), 055022. https://doi.org/10.1088/0964-1726/20/5/055022
- Karami, M.A. (2012), "Micro-scale and nonlinear vibrational energy harvesting", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
- Karami, M.A., Farmer, J.R. and Inman, D.J. (2013), "Parametrically excited nonlinear piezoelectric compact wind turbine", Renew. Energ., 50, 977-987. https://doi.org/10.1016/j.renene.2012.07.037
- Kim, H.S., Kim, J.H. and Kim, J. (2011), "A review of piezoelectric energy harvesting based on vibration", Int. J. Precision Eng. Manufact., 12(6), 1129-1141. https://doi.org/10.1007/s12541-011-0151-3
- Kishore, R.A., Coudron, T. and Priya, S. (2013), "Small-scale wind energy portable turbine (SWEPT)", J. Wind Eng. Ind. Aerod., 116, 21-31. https://doi.org/10.1016/j.jweia.2013.01.010
- Kwon, S.D. (2010), "A T-shaped piezoelectric cantilever for fluid energy harvesting", Appl. Phys. Lett., 97(16), 164102. https://doi.org/10.1063/1.3503609
- Lallart, M. and Guyomar, D. (2008), "An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output", Smart Mater. Struct., 17(3), 035030. https://doi.org/10.1088/0964-1726/17/3/035030
- Lee, B., Price, S. and Wong, Y. (1999), "Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos", PrAeS, 35(3), 205-334.
- Lefeuvre, E., Badel, A., Richard, C. and Guyomar, D. (2007), "Energy harvesting using piezoelectric materials: Case of random vibrations", J. Electroceram., 19(4), 349-355. https://doi.org/10.1007/s10832-007-9051-4
- Lefeuvre, E., Badel, A., Richard, C., Petit, L. and Guyomar, D. (2006), "A comparison between several vibration-powered piezoelectric generators for standalone systems", Sensors Actuat. A: Phys., 126(2), 405-416. https://doi.org/10.1016/j.sna.2005.10.043
- Li, F., Xiang, T., Chi, Z., Luo, J., Tang, L., Zhao, L. and Yang, Y. (2013), "Powering indoor sensing with airflows: a trinity of energy harvesting, synchronous duty-cycling, and sensing", Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems.
- Liang, J. and Liao, W.H. (2012), "Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems", ITIE, 59(4), 1950-1960.
- Lien, I.C., Shu, Y.C., Wu, W.J., Shiu, S.M. and Lin, H.C. (2010), "Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting", Smart Mater. Struct., 19(12), 125009. https://doi.org/10.1088/0964-1726/19/12/125009
- Lu, F., Lee, H. and Lim, S. (2004), "Modeling and analysis of micro piezoelectric power generators for microelectromechanical-systems applications", Smart Mater. Struct., 13(1), 57. https://doi.org/10.1088/0964-1726/13/1/007
- Mahajan, A.J., Kaza, K.R. and Dowell, E. (1993), "Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter", JFS, 7(1), 87-103.
- McAlister, K.W., Lambert, O. and Petot, D. (1984), "Application of the ONERA model of dynamic stall", DTIC Document, No. NASA-A-9824.
- McCarthy, J.M., Watkins, S., Deivasigamani, A. and John, S.J. (2016), "Fluttering energy harvesters in the wind: A review", J. Sound Vib., 361, 355-377. https://doi.org/10.1016/j.jsv.2015.09.043
- McKinney, W. and Delaurier, J. (1981), "Wingmill: an oscillatingwing windmill", JEner, 5(2), 109-115. https://doi.org/10.2514/3.62510
- Mehmood, A., Abdelkefi, A., Hajj, M.R., Nayfeh, A.H., Akhtar, I. and Nuhait, A.O. (2013), "Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder", J. Sound Vib., 332(19), 4656-4667. https://doi.org/10.1016/j.jsv.2013.03.033
- Meninger, S., Mur-Miranda, J.O., Amirtharajah, R., Chandrakasan, A.P. and Lang, J.H. (2001), "Vibration-to-electric energy conversion", IEEE T. Very Large Scale Integration (VLSI) Systems, 9(1), 64-76. https://doi.org/10.1109/92.920820
- Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E., Holmes, A. and Green, T. (2004), "MEMS electrostatic micropower generator for low frequency operation", Sensors Actuat. A: Phys., 115(2), 523-529. https://doi.org/10.1016/j.sna.2004.04.026
- Myers, R., Vickers, M., Kim, H. and Priya, S. (2007), "Small scale windmill", Appl. Phys. Lett., 90(5), 054106. https://doi.org/10.1063/1.2435346
- Novak, M. (1969), "Aeroelastic galloping of prismatic bodies", J. Eng. Mech. Div.-ASCE, 95, 115-142.
- Novak, M. and Tanaka, H. (1974), "Effect of turbulence on galloping instability", J. Eng. Mech.-ASCE 100(1), 27-47.
- Paidoussis, M.P., Price, S.J. and De Langre, E. (2010), Fluidstructure interactions: Cross-flow-induced instabilities, Cambridge University Press, New York.
- Park, J., Morgenthal, G., Kim, K., Kwon, S.D. and Law, K.H. (2014), "Power evaluation of flutter-based electromagnetic energy harvesters using computational fluid dynamics simulations", J. Intel. Mat. Syst. Str., 25(14), 1800-1812. https://doi.org/10.1177/1045389X14526954
- Park, J.W., Jung, H.J., Jo, H. and Spencer, B.F. (2012), "Feasibility study of micro-wind turbines for powering wireless sensors on a cable-stayed bridge", Energies, 5(9), 3450-3464. https://doi.org/10.3390/en5093450
- Pellegrini, S.P., Tolou, N., Schenk, M. and Herder, J.L. (2013), "Bistable vibration energy harvesters: A review", J. Intel. Mat. Syst. Str., 24(11), 1303-1312. https://doi.org/10.1177/1045389X12444940
- Peters, D.A. (1985), "Toward a unified lift model for use in rotor blade stability analyses", J. Am. Helicopter Soc., 30(3), 32-42. https://doi.org/10.4050/JAHS.30.32
- Peters, D.A., Karunamoorthy, S. and Cao, W.M. (1995), "Finite state induced flow models. I-Two-dimensional thin airfoil", JAir, 32(2), 313-322.
- Piezoelectric materials. Retrieved November 4, 2014, from http://www.piezomaterials.com/
- Pobering, S. and Schwesinger, N. (2008), "Power supply for wireless sensor systems", Proceedings of Sensors, 2008 IEEE, 685-688.
- Pobering, S., Menacher, M., Ebermaier, S. and Schwesinger, N. (2009), "Piezoelectric power conversion with self-induced oscillation", Proceedings of PowerMEMS, 384-387.
- Powell, A. (1958), "On the fatigue failure of structures due to vibrations excited by random pressure fields", J. Acoust. Soc. Am., 30(12), 1130-1135. https://doi.org/10.1121/1.1909481
- Priya, S. (2005), "Modeling of electric energy harvesting using piezoelectric windmill", Appl. Phys. Lett., 87(18), 184101. https://doi.org/10.1063/1.2119410
- Priya, S., Chen, C.T., Fye, D. and Zahnd, J. (2005), "Piezoelectric windmill: A novel solution to remote sensing", Jpn. J. Appl. Phys., 44(3), 104-107. https://doi.org/10.1143/JJAP.44.L104
- Rancourt, D., Tabesh, A. and Frechette, L.G. (2007), "Evaluation of centimeter-scale micro windmills: aerodynamics and electromagnetic power generation", Proceedings of PowerMEMS, 93-96.
- Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018
- Roundy, S., Wright, P.K. and Rabaey, J. (2003), "A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11), 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
- Ruscheweyh, H. (1983), "Aeroelastic interference effects between slender structures", J. Wind Eng. Ind. Aerod., 14(1), 129-140. https://doi.org/10.1016/0167-6105(83)90017-X
- Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", JFS, 19(4), 389-447.
- Schmidt, V.H. (1985), US4536674 A.
- Schmidt, V.H. (1992), "Piezoelectric energy conversion in windmills", Proceedings of Ultrasonics Symposium, IEEE 1992, 897-904.
- Shiraishi, N., Matsumoto, M. and Shirato, H. (1986), "On aerodynamic instabilities of tandem structures", J. Wind Eng. Ind. Aerod., 23, 437-447. https://doi.org/10.1016/0167-6105(86)90061-9
- Sirohi, J. and Mahadik, R. (2011), "Piezoelectric wind energy harvester for low-power sensors", J. Intel. Mat. Syst. Str., 22(18), 2215-2228. https://doi.org/10.1177/1045389X11428366
- Sirohi, J. and Mahadik, R. (2012), "Harvesting wind energy using a galloping piezoelectric beam", J. Vib. Acoust., 134(1), 011009. https://doi.org/10.1115/1.4004674
- Sivadas, V. and Wickenheiser, A.M. (2011), "A study of several vortex-induced vibration techniques for piezoelectric wind energy harvesting", Proceedings of SPIE, 79770F.
- Sodano, H.A., Park, G. and Inman, D.J. (2004), "An investigation into the performance of macro-fiber composites for sensing and structural vibration applications", MSSP, 18(3), 683-697.
- Sorribes-Palmer, F. and Sanz-Andres, A. (2013), "Optimization of energy extraction in transverse galloping", JFS, 43, 124-144.
- Sousa, V., De M Anicezio, M., De Marqui Jr., C. and Erturk, A. (2011), "Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment", Smart Mater. Struct., 20(9), 094007. https://doi.org/10.1088/0964-1726/20/9/094007
- Stanton, S.C., Erturk, A., Mann, B.P. and Inman, D.J. (2010), "Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification", J. Appl. Phys., 108(7), 074903. https://doi.org/10.1063/1.3486519
- Sterken, T., Fiorini, P., Baert, K., Borghs, G. and Puers, R. (2004), "Novel design and fabrication of a MEMS electrostatic vibration scavenger", Proceedings of PowerMEMS 18-21.
- Strasser, M., Aigner, R., Lauterbach, C., Sturm, T., Franosch, M. and Wachutka, G. (2004), "Micromachined CMOS thermoelectric generators as on-chip power supply", Sensors Actuat. A: Phys., 114(2), 362-370. https://doi.org/10.1016/j.sna.2003.11.039
- Strganac, T.W., Ko, J. and Thompson, D.E. (2000), "Identification and control of limit cycle oscillations in aeroelastic systems", J. Guid. Control, Dynam., 23(6), 1127-1133. https://doi.org/10.2514/2.4664
- Tang, D. and Dowell, E. (1996), "Comments on the ONERA stall aerodynamic model and its impact on aeroelastic stability", JFS, 10(4), 353-366.
- Tang, D.M., Yamamoto, H. and Dowell, E.H. (2003), "Flutter and limit cycle oscillations of two-dimensional panels in threedimensional axial flow", JFS, 17(2), 225-242.
- Tang, L., Yang, Y. and Soh, C.K. (2010), "Toward broadband vibration-based energy harvesting", J. Intel. Mat. Syst. Str., 21(18), 1867-1897. https://doi.org/10.1177/1045389X10390249
- Tang, L., Zhao, L., Yang, Y. and Lefeuvre, E. (2015), "Equivalent circuit representation and analysis of galloping-based wind energy harvesting", IEEE/ASME T. Mechatronics, 20, 834-844. https://doi.org/10.1109/TMECH.2014.2308182
- Theodorsen, T. (1934). General Theory of Aerodynamic Instability and the Mechanism of Flutter.
- Tien, C.M.T. and Goo, N.S. (2010), "Use of a piezo-composite generating element for harvesting wind energy in an urban region", Aircraft Eng. Aerospace Technol., 82(6), 376-381. https://doi.org/10.1108/00022661011104538
- Tokoro, S., Komatsu, H., Nakasu, M., Mizuguchi, K. and Kasuga, A. (2000), "A study on wake-galloping employing full aeroelastic twin cable model", J. Wind Eng. Ind. Aerod., 88(2), 247-261. https://doi.org/10.1016/S0167-6105(00)00052-0
- Torres, E.O. and Rincon-Mora, G.A. (2009), "Electrostatic energyharvesting and battery-charging CMOS system prototype", IEEE Transactions on Circuits and Systems I: Regular Papers, 56(9), 1938-1948. https://doi.org/10.1109/TCSI.2008.2011578
- Tran, C.T. and Petot, D. (1981), "Semi-empirical model for the dynamic stall of airfoils in view of application to the calculated responses of a helicopter in forward flight", Vert, 51, 35-53.
- Truitt, A. and Mahmoodi, S.N. (2013), "A review on active wind energy harvesting designs", Int. J. Precision Eng. Manufact., 14(9), 1667-1675. https://doi.org/10.1007/s12541-013-0226-4
- Vestas V164-8.0 nacelle and hub. Retrieved November 4, 2014, from http://www.windpowermonthly.com/article/1211056/close---vestas-v164-80-nacelle-hub
- Wang, Y. (2012), "Simultaneous energy harvesting and vibration control via piezoelectric materials", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
- Wang, Z.L. (2011), Nanogenerators for self-powered devices and systems, Georgia Institute of Technology, Atlanta.
- Weinstein, L.A., Cacan, M.R., So, P.M. and Wright, P.K. (2012), "Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows", Smart Mater. Struct., 21(4), 045003. https://doi.org/10.1088/0964-1726/21/4/045003
- Wickenheiser, A.M., Reissman, T., Wu, W.J. and Garcia, E. (2010), "Modeling the effects of electromechanical coupling on energy storage through piezoelectric energy harvesting", IEEE/ASME T. Mechatronics, 15(3), 400-411. https://doi.org/10.1109/TMECH.2009.2027318
- Williams, C.B. and Yates, R.B. (1996), "Analysis of a microelectric generator for microsystems", Sensor. Actuat. A.-Phys., 52(1-3), 8-11. https://doi.org/10.1016/0924-4247(96)80118-X
- Williamson, C.H. (1996), "Vortex dynamics in the cylinder wake", AnRFM, 28(1), 477-539.
- Williamson, C.H.K. and Govardhan, R. (2004), "Vortex-induced vibrations", AnRFM, 36(1), 413-455.
- Xiang, J., Wu, Y. and Li, D. (2015), "Energy harvesting from the discrete gust response of a piezoaeroelastic wing: Modeling and performance evaluation", J. Sound Vib., 343, 176-193. https://doi.org/10.1016/j.jsv.2014.12.023
- Xiang, J., Yan, Y. and Li, D. (2014), "Recent advance in nonlinear aeroelastic analysis and control of the aircraft", ChJA, 27(1), 12-22.
- Xiao, Q. and Zhu, Q. (2014), "A review on flow energy harvesters based on flapping foils", JFS, 46, 174-191.
- Xie, J., Yang, J., Hu, H., Hu, Y. and Chen, X. (2012), "A piezoelectric energy harvester based on flow-induced flexural vibration of a circular cylinder", J. Intel. Mat. Syst. Str., 23(2), 135-139. https://doi.org/10.1177/1045389X11431744
- Xu, F., Yuan, F., Hu, J. and Qiu, Y. (2010), "Design of a miniature wind turbine for powering wireless sensors", Proceedings of SPIE, 764741.
- Yan, Z. and Abdelkefi, A. (2014), "Nonlinear characterization of concurrent energy harvesting from galloping and base excitations", Nonlinear Dynam., 77(4), 1171-1189. https://doi.org/10.1007/s11071-014-1369-2
- Yang, Y. and Tang, L. (2009), "Equivalent circuit modeling of piezoelectric energy harvesters", J. Intel. Mat. Syst. Str., 20(18), 2223-2235. https://doi.org/10.1177/1045389X09351757
- Yang, Y., Zhao, L. and Tang, L. (2013), "Comparative study of tip cross-sections for efficient galloping energy harvesting", Appl. Phys. Lett., 102(6), 064105. https://doi.org/10.1063/1.4792737
- Zhao, L. (2015), "Small-scale wind energy harvesting using piezoelectric materials", Ph.D. Dissertation, Nanyang Technological University.
- Zhao, L. and Yang, Y. (2015a), "Enhanced aeroelastic energy harvesting with a beam stiffener", Smart Mater. Struct., 24(3), 032001. https://doi.org/10.1088/0964-1726/24/3/032001
- Zhao, L. and Yang, Y. (2015b), "Analytical solutions for galloping-based piezoelectric energy harvesters with various interfacing circuits", Smart Mater. Struct., 24(7), 075023. https://doi.org/10.1088/0964-1726/24/7/075023
- Zhao, L. and Yang, Z. (1990), "Chaotic motions of an airfoil with non-linear stiffness in incompressible flow", J. Sound Vib., 138(2), 245-254. https://doi.org/10.1016/0022-460X(90)90541-7
- Zhao, L., Liang, J., Tang, L., Yang, Y. and Liu, H. (2015), "Enhancement of galloping-based wind energy harvesting by synchronized switching interface circuits", Proceedings of SPIE, 943113.
- Zhao, L., Tang, L. and Yang, Y. (2012), "Small wind energy harvesting from galloping using piezoelectric materials", Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems.
- Zhao, L., Tang, L. and Yang, Y. (2013), "Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester", Smart Mater. Struct., 22(12), 125003. https://doi.org/10.1088/0964-1726/22/12/125003
- Zhao, L., Tang, L. and Yang, Y. (2014a), "Enhanced piezoelectric galloping energy harvesting using 2 degree-of-freedom cut-out cantilever with magnetic interaction", Jpn. J. Appl. Phys., 53(6), 060302. https://doi.org/10.7567/JJAP.53.060302
- Zhao, L., Tang, L. and Yang, Y. (2016), "Synchronized charge extraction in galloping piezoelectric energy harvesting", J. Intel. Mat. Syst. Str., 27(4), 453-468. https://doi.org/10.1177/1045389X15571384
- Zhao, L., Tang, L., Wu, H. and Yang, Y. (2014b), "Synchronized charge extraction for aeroelastic energy harvesting", Proceedings of SPIE, 90570N.
- Zhu, Q. (2011), "Optimal frequency for flow energy harvesting of a flapping foil", J. Fluid Mech., 675, 495-517. https://doi.org/10.1017/S0022112011000334
- Zhu, Q. and Peng, Z. (2009), "Mode coupling and flow energy harvesting by a flapping foil", Physics of Fluids (1994-present), 21(3), 033601. https://doi.org/10.1063/1.3092484
- Zhu, Q., Haase, M. and Wu, C.H. (2009), "Modeling the capacity of a novel flow-energy harvester", Appl. Math. Model., 33(5), 2207-2217. https://doi.org/10.1016/j.apm.2008.05.027
Cited by
- Aeroelastic flutter enhancement by exploiting the combined use of shape memory alloys and nonlinear piezoelectric circuits vol.407, 2017, https://doi.org/10.1016/j.jsv.2017.06.034
- An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting vol.212, 2018, https://doi.org/10.1016/j.apenergy.2017.12.042
- Dual serial vortex-induced energy harvesting system for enhanced energy harvesting vol.8, pp.7, 2018, https://doi.org/10.1063/1.5038884
- Influences of Environmental Motion Modes on the Efficiency of Ultrathin Flexible Piezoelectric Energy Harvesters vol.32, pp.5, 2017, https://doi.org/10.1007/s10338-019-00085-8
- Piezoelectric vortex induced vibration energy harvesting in a random flow field vol.29, pp.3, 2017, https://doi.org/10.1088/1361-665x/ab519f
- Vibration Energy Storage System of Subway Track Based on Piezoelectric Cantilever Beam vol.647, pp.None, 2017, https://doi.org/10.1088/1755-1315/647/1/012149
- PZT계 압전 세라믹 파이버 복합체의 기계적 물성과 압전 풍력 에너지 하베스팅 특성 vol.34, pp.2, 2017, https://doi.org/10.4313/jkem.2021.34.2.90
- Theoretical modeling and analysis of piezoelectric energy harvester with variable section overhanging beam vol.1906, pp.1, 2017, https://doi.org/10.1088/1742-6596/1906/1/012019