References
- Ajayan, P.M., Suhr, J. and Koratkar, N. (2006), "Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping", J. Mater. Sci., 41(23), 7824-7829. https://doi.org/10.1007/s10853-006-0693-4
- Arash, M., Jafar, J., Alireza, K., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Design, 31(9), 4202-4208. https://doi.org/10.1016/j.matdes.2010.04.018
- ASTM E756-05 (2010), Standard Test Methods for Measuring Vibration Damping Properties of Materials, Building Standards.
- Buldum, A. and Lu, J.P. (1999), "Atomic scale sliding and rolling of carbon nanotubes", Phys. Rev. Lett., 83, 5050-5053. https://doi.org/10.1103/PhysRevLett.83.5050
- Brackbill, C.R., Lesieutre, G.A., Smith, E.C. and Ruhl, L.E. (2000). "Characterization and modeling of the low strain amplitude and frequency dependent behavior of elastomeric damper materials", J. Am. Helicopter Soc., 45(1), 34-42. https://doi.org/10.4050/JAHS.45.34
- Deng, C.F., Wang, D.Z., Zhang, X.X. and Ma, Y.X. (2007), "Damping characteristics of carbon nanotube reinforced aluminum composite", Mater. Lett., 61(14-15), 3229-3231. https://doi.org/10.1016/j.matlet.2006.11.073
- Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Design, 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
- Fereidoon, A., Kordani, N., Ahangari, M.G. and Ashoory, M. (2010), "Damping augmentation of epoxy using carbon nanotubes", Int. J. Polym. Mater., 60(1), 11-26. https://doi.org/10.1080/00914037.2010.504152
- Gou, J., Minaie, B., Wang, B., Liang, Z. and Zhang, C. (2004), "Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites", Comp. Mater. Sci., 31(3-4), 225-236. https://doi.org/10.1016/j.commatsci.2004.03.002
- Geng, Y., Liu, M.Y., Li, J., Shi, X.M. and Kim, J.K. (2008), "Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites", Compos. Part A-Appl. S., 39(12), 1876-1883. https://doi.org/10.1016/j.compositesa.2008.09.009
- Jarali, C.S., Patil, S.F. and Pilli, S.C. (2013), "Hygro-thermoelectric properties of CNT nanocomposites with agglomeration effects. mechanics of advanced materials and structures", (DOI 10.1080/15376494.2013.769654).
- Jarali, C.S., Basavaraddi, S.R., Bjorn, K., Pilli, S.C. and Lu, Y.C. (2014), "Modelling of the effective elastic properties of multifunctional CNT nanocomposites due to agglomeration of straight circular CNT fibers in a polymer matrix", J. Appl. Mech. -T ASME, 81, 021010-1-021010-11. (Doi: 10.1115/1.4024414).
- Jarali, C.S., Patil, S.F., Pilli, S.C., Raja, S. and Karjinni, V.V. (2015), "Modelling the hygro-thermo-mechanical agglomeration relations of carbon-epoxy hybrid nNanocomposites", J. Multiscale Comput. Eng., 13(3), 231-248. https://doi.org/10.1615/IntJMultCompEng.2015012650
- Koratkar, N., Wei, B.Q. and Ajayan, P.M. (2002), "Carbon nanotube films for damping applications", Adv. Mater., 14(13-14), 997-1000. https://doi.org/10.1002/1521-4095(20020705)14:13/14<997::AID-ADMA997>3.0.CO;2-Y
- Koratkar, N.A., Suhr, J., Joshi, A. et al. (2005), "Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites", Appl. Phys. Lett., 87(6), 063102. https://doi.org/10.1063/1.2007867
- Kireitseu, M., Hui, D. and Tomlinson, G. (2008), "Advanced shock-resistant and vibration damping of nanoparticlereinforced composite material", Compos. Part B-Eng., 39(1), 128-138. https://doi.org/10.1016/j.compositesb.2007.03.004
- Khan, S.U., Li, C.Y., Siddiqui, N.A. and Kim, J.K. (2011), "Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes", Compos. Sci. Technol., 71(12), 1486-1494. https://doi.org/10.1016/j.compscitech.2011.03.022
- Lindler, J.E. and Wereley, N.M. (1999), "Double adjustable shock absorbers using electro-rheological fluid", J. Intel. Mat. Syst. Str., 10(8), 652-657. https://doi.org/10.1106/468R-DHQM-076W-MAF6
- Li, C. and Chou, T.W. (2003), "Elastic moduli of multi-walled carbon nanotubes and the effect of van der waals forces", Compos. Sci. Technol., 63(11), 1517-1524. https://doi.org/10.1016/S0266-3538(03)00072-1
- Liu, A., Huang, J.H., Wang, K.W. and Bakis, C.E. (2006), "Effects of interfacial friction on the damping characteristics of composites containing randomly oriented carbon nanotube ropes", J. Intel. Mat. Syst. Str., 17(3), 217-229. https://doi.org/10.1177/1045389X06056063
- Liu, A., Wang, K.W. and Bakis, C.E. (2010), "Multiscale damping model for polymeric composites containing carbon nanotube ropes", J. Compos. Mater., 44, 2301-2323. https://doi.org/10.1177/0021998310365176
- Lin, R.M. and Lu, C. (2010), "Modeling of interfacial friction damping of carbon nanotube-based nanocomposites", Mech. Syst. Signal Pr., 24(8), 2996-3012. https://doi.org/10.1016/j.ymssp.2010.06.003
- Paradise, M. and Goswami, T. (2007), "Carbon nanotubes-production and industrial applications", Mater. Design, 28(5), 1477-1489. https://doi.org/10.1016/j.matdes.2006.03.008
- Rajoria, H. and Jalili, N. (2005), "Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites", Compos. Sci. Technol., 65(14), 2079-2093. https://doi.org/10.1016/j.compscitech.2005.05.015
- Sun, C.T. and Lu, Y.P. (1995), Vibration damping of structural elements, Prentice Hall.
- Salvetat-Delmotte, J.P. and Rubio, A. (2002), "Mechanical properties of carbon nanotubes: A fiber digest for beginners", Carbon, 40(10), 1729-1734. https://doi.org/10.1016/S0008-6223(02)00012-X
- Suhr, J. and Koratkar, N. (2008), "Energy dissipation in carbon nanotube composites: A review", J. Mater. Sci., 43(13), 4370-4382. https://doi.org/10.1007/s10853-007-2440-x
- Wetzel, B., Rosso, P., Haupert, F. and Friedrich, K. (2006), "Epoxy nanocomposites-fracture and toughening mechanisms", Eng. Fract. Mech., 73(16), 2375-2398. https://doi.org/10.1016/j.engfracmech.2006.05.018
- Xu, X., Thwe, M.M., Shearwood, C. and Liao, K. (2002), "Mechanical properties and interfacial characteristics of carbonnanotube-reinforced epoxy thin films", Appl. Phys. Lett., 81, 2833. https://doi.org/10.1063/1.1511532
- Yu, M.F., Yakobson, B.I. and Ruoff, R.S. (2000), "Controlled sliding and pullout of nested shells in individual multi walled carbon nanotubes", J. Phys. Chem. B., 104(37), 8764-8767. https://doi.org/10.1021/jp002828d
- Zhou, X., Shin, E., Wang, K.W. and Bakis, C.E. (2004), "Interfacial damping characteristics of carbon nanotube-based composites", Compos. Sci. Technol., 64(15), 2425-2437. https://doi.org/10.1016/j.compscitech.2004.06.001
Cited by
- Viscoelastic modeling and vibration damping characteristics of hybrid CNTs-CFRP composite shell structures 2017, https://doi.org/10.1007/s00707-017-2051-9
- Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping vol.20, pp.5, 2017, https://doi.org/10.12989/sss.2017.20.5.583
- Vibration response of smart concrete plate based on numerical methods vol.23, pp.4, 2019, https://doi.org/10.12989/sss.2019.23.4.387
- Experimental investigation of self-healing concrete after crack using nano-capsules including polymeric shell and nanoparticles core vol.25, pp.3, 2017, https://doi.org/10.12989/sss.2020.25.3.337