Acknowledgement
Supported by : Natural Science Foundation of China
References
- Andreaus, U. (1996), "Failure criteria for masonry panels under in-plane loading", J. Struct. Eng., 122(1), 37-46. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(37)
- Asteris, P.G. (2013), "Unified yield surface for the nonlinear analysis of brittle anisotropic materials", Nonlin. Sci. Lett. A., 14(2), 46-56.
- Asteris, P.G. and Syrmakezis, C.A. (2009), "Non-dimensional masonry failure criterion under biaxial stress state", 11th Masonry Symposium, Toronto, Canada, June.
- Badarloo, B., Tasnimi, A.A. and Mohammadi, M.S. (2009), "Failure criteria of unreinforced grouted brick masonry based on a biaxial compression test", Scientia Iranica Transaction A Civil Eng., 16(6), 502-511.
- Dhanasekar, M., Page, A.W. and Kleeman, P.W. (1985), "The failure of brick masonry under biaxial stresses", Proc. Instn Civ. Engrs, Part 2, 79(2), 295-313.
- Liu, L., Tang, D. and Zhai, X. (2006), "Failure criteria for grouted concrete block masonry under biaxial compression", Adv. Struct. Eng., 9(2), 229-239. https://doi.org/10.1260/136943306776987001
- Liu, L., Tang, D., Zhai, X. and Ma, J. (2009), "Experimental study of grouted concrete block masonry's biaxial compressive strength", J. HUST, Urban Science Edition, 26(3), 18-22.
- Liu, L., Wang, Z., Zhai, C. and Zhai, X. (2010), "Constitutive law of grouted concrete block masonry in plain stress state", Struct. Eng. Mech., 34(3), 391-394. https://doi.org/10.12989/sem.2010.34.3.391
- Naraine, K. and Sinha, S. (1991), "Cyclic behavior of brick masonry under biaxial compression", J. Struct. Eng., 117(5), 1336-1355. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:5(1336)
- Nazar, M. and Sinha, S. (2006), "Influence of bed joint orientation on interlocking grouted stabilized mud-flyash brick masonry under cyclic compressive loading", Struct. Eng. Mech., 24, 585-599. https://doi.org/10.12989/sem.2006.24.5.585
- Page, A.W. (1981), "The biaxial compressive strength of brick masonry", Proceedings of the Institution of Civil Engineers Part Research & Theory, 71(3), 893-906. https://doi.org/10.1680/iicep.1981.1825
- Plevris, V. and Asteris, P.G. (2014), "Modeling of masonry failure surface under biaxial compressive stress using Neural Networks", Constr. Build. Mater., 55(55), 447-461. https://doi.org/10.1016/j.conbuildmat.2014.01.041
- Senthivel, R. and Uzoegbo, H.C. (2004), "Failure criterion of unreinforced masonry under biaxial pseudo dynamic loading", J. South Afri. Inst. Civil Eng., 46(4), 20-24.
- Shan, R. and Tang, D. (1988), "Experimental study of the strength of brick masonry under biaxial compression", J. Harbin Univ. Civil Eng. Arch., 21(2), 39-46.
- Sun, Z. and Tang, D. (2010), "Failure criterion of grouted concrete block Masonry's biaxial strength", New Masonry Structural System and Wall Materials-Compilation of Research Results of Reinforced Block Masonry, July.
- Syrmakezis, C.A. and Asteris, P.G. (2001), "Masonry failure criterion under biaxial stress state", J. Mater. Civil Eng., 13(1), 58-64. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:1(58)
- Tsai, S.W. and Wu, E.M. (1971), "A general failure criterion for anisotropic materials", J. Compos. Mater., 5, 58-80 https://doi.org/10.1177/002199837100500106
- Ural, A. and Dogangun, A. (2012), "Crack development depending on bond design for masonry walls under shear", Struct. Eng. Mech., 44(2), 257-266. https://doi.org/10.12989/sem.2012.44.2.257
- Ushaksaraei, R. and Pietruszczak, S. (2002), "Failure criterion for structural masonry based on critical plane approach", J. Eng. Mech., 128(7), 769-778. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:7(769)
- Xin, R. and Zhang, C. (2016), "Experimental research on masonry structure strength under biaxial tensile-compressive stress", Eng. Mech., 33(10), 183-188.
- Yang, W.J., Li, Y. and Jiang, N. (2012), "The research of masonry failure criterion based on orthogonal anisotropic strength theory", Adv. Mater. Res., 450-451, 1646-1651. https://doi.org/10.4028/www.scientific.net/AMR.450-451.1646
- Yao, J., Xin, R. and Dong, Z. (2015) "Experimental method of biaxial mechanical properties for masonry structure", China, ZL201210261488.4.
Cited by
- Seismic behavior and shear strength of new-type fired perforated brick walls with high void ratio pp.2048-4011, 2018, https://doi.org/10.1177/1369433218802690
- Nonlinear analysis of contemporary and historic masonry vaulted elements externally strengthened by FRP vol.65, pp.5, 2017, https://doi.org/10.12989/sem.2018.65.5.611
- Experimental investigation into brick masonry arches' (vault and rib cover) behavior reinforced by FRP strips under vertical load vol.67, pp.5, 2018, https://doi.org/10.12989/sem.2018.67.5.481
- A simplified method for estimating the fundamental period of masonry infilled reinforced concrete frames vol.74, pp.6, 2017, https://doi.org/10.12989/sem.2020.74.6.821
- Seismic performance study on critically damaged masonry piers retrofitted using shear-compressive metal dampers vol.34, pp.None, 2017, https://doi.org/10.1016/j.istruc.2021.10.022