DOI QR코드

DOI QR Code

On the attenuation of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder made of viscoelastic materials

  • Kocal, Tarik (Department of Marine Engineering Operations, Yildiz Campus) ;
  • Akbarov, Surkay D. (Department of Mechanical Engineering, Yildiz Technical University)
  • 투고 : 2016.02.22
  • 심사 : 2016.11.06
  • 발행 : 2017.01.10

초록

The paper studies the attenuation of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder made of linear viscoelastic materials. Investigations are made by utilizing the exact equations of motion of the theory of viscoelasticity. The dispersion equation is obtained for an arbitrary type of hereditary operator of the materials of the constituents and a solution algorithm is developed for obtaining numerical results on the attenuation of the waves under consideration. Specific numerical results are presented and discussed for the case where the viscoelasticity of the materials is described through fractional-exponential operators by Rabotnov. In particular, how the rheological parameters influence the attenuation of the axisymmetric longitudinal waves propagating in the cylinder under consideration, is established.

키워드

참고문헌

  1. Adolfson, K., Enelund, M. and Olsson, P. (2005), "On the fractional order model of viscoelasticity", Mech Time-Depend Mater., 9, 15-34. https://doi.org/10.1007/s11043-005-3442-1
  2. Akbarov, S.D. (2014), "Axisymmetric time-harmonic Lamb's problem for a system comprising a viscoelastic layer covering a viscoelastic half-space", Mech. Time-Depend. Mater., 18, 153-178.
  3. Akbarov, S.D. (2015), Dynamics of Pre-Strained Bi-Material Elastic Systems: Linearized Three-Dimensional Approach. Springer, Heideiberg, New-York, Dordrecht, London.
  4. Akbarov, S.D. and Guliev, M.S. (2009), "Axisymmetric longitudinal wave propagation in a finite pre-strained compound circular cylinder made from compressible materials", CMES: Comput. Model. Eng. Sci., 39(2), 155-177.
  5. Akbarov, S.D. and Ipek, C. (2010), "The influence of the imperfectness of the interface conditions on the dispersion of the axisymmetric longitudinal waves in the pre-strained compound cylinder", CMES: Comput. Model. Eng. Sci., 70(2), 93-121
  6. Akbarov, S.D. and Ipek, C. (2012), "Dispersion of axisymmetric longitudinal waves in a pre-strained imperfectly bonded bilayered hollow cylinder", CMC: Comput. Mater. Continua, 32(2), 99-144
  7. Akbarov, S.D. and Ipek, C. (2015), "Influence of an imperfection of interfacial contact on the dispersion of flexural waves in a compound cylinder", Mech. Comput. Mater., 51(2), 191-198. https://doi.org/10.1007/s11029-015-9489-4
  8. Akbarov, S.D. and Kepceler, T. (2015), "On the torsional wave dispersion in a hollow sandwich circular cylinder made from viscoelastic materials", Appl. Math. Model., 39, 3569-3587. https://doi.org/10.1016/j.apm.2014.11.061
  9. Akbarov, S.D., Negin, M and Ipek, C. (2015), "Effect of imperfect contact on the dispersion of generalized Rayleigh waves in a system consisting of a prestressed layer and a prestressed halfplane", Mech. Comput. Mater., 51(3), 397-404. https://doi.org/10.1007/s11029-015-9510-y
  10. Barshinger, J.N. and Rose, J.L. (2004),"Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material", IEEE Tran. Ultrason. Freq. Control, 51, 1574-1556.
  11. Bartoli, I., Marzani, A., Lanza di Scalea, F. and Viola, E. (2006), "Modeling wave propagation in damped waveguides of arbitrary cross-section", J. Sound Vib., 295, 685-707. https://doi.org/10.1016/j.jsv.2006.01.021
  12. Benjamin, E.D., David, O.B., Bertram, J.W., Christoph, B., Simon, G., Lars, K., Maximilian, H., Thomas, S., Johanna Vannesjo, S. and Klaas, P.P. (2016), "A field camera for MR sequence monitoring and system analysis", Mag. Reson. Med., 75, 1831-1840 https://doi.org/10.1002/mrm.25770
  13. Bosiakov, S.M. (2014), "On the application of a viscoelastic model with Rabotnov's fractional exponential function for assessment of the stress-strain state of the periodontal ligament", Int. J. Mech., 8, 353-358.
  14. Chervinko, O.P. and Sevchenkov, I.K. (1986), "Harmonic viscoelastic waves in a layer and in an infinite cylinder", Int. Appl. Mech. 22, 1136-1186.
  15. Christenson R.M. (2010), Theory of viscoelasticity, 2nd Edition, Academic Press, New York
  16. Coquin G.A. (1964), "Attenuation of guided waves in isotropic viscoelastic materials", J. Acoust. Soc. Am. 36, 1074-1080. https://doi.org/10.1121/1.1919155
  17. Eringen, A.C. and Suhubi, E.S. (1975), Elastodynamics, Finite motion, vol. 1; Linear theory, Vo. II, Academic Press, New York
  18. Ewing, W.M., Jazdetzky, W.S. and Press, F. (1957), Elastic waves in layered media, McGraw-Hill, New York.
  19. Fung, Y.C. (1965), Introduction to solid mechanics, Prentice-Hall.
  20. Golub, V.P., Fernati, P.V. and Lyashenko, Y.G. (2008), "Determining the parameters of the fractional exponential heredity kernels of linear viscoelastic materials", Int. Appl. Mech., 44(9), 963-974. https://doi.org/10.1007/s10778-009-0121-y
  21. Guz, A.N. (2004), Elastic waves in bodies with initial (residual) stresses, A.C.K. Kiev. (in Russian)
  22. Hernando Quintanilla, F., Fan, Z., Lowe, M.J.S. and Craster, R.V. (2015), "Guided waves' dispersion curves in anisotropic viscoelastic single-and multi-layered media", Proc. R. Soc. A, 471, 20150268. https://doi.org/10.1098/rspa.2015.0268
  23. Ilhan, N. and Koc, N. (2015), "Influence of polled direction on the stress distribution in piezoelectric materials", Struct. Eng. Mech., 54, 955-971. https://doi.org/10.12989/sem.2015.54.5.955
  24. Ipek, C. (2015), "The dispersion of the flexural waves in a compound hollow cylinder under imperfect contact between layers", Struct. Eng. Mech., 55, 338-348.
  25. Kaminskii, A.A. and Selivanov, M.F. (2005), "An approach to the determination of the deformation characteristics of viscoelastic materials", Int. Appl. Mech., 41(8), 867-875. https://doi.org/10.1007/s10778-005-0153-x
  26. Kirby, R., Zlatev, Z. and Mudge, P. (2012), "On the scattering of torsional elastic waves from axisymmetric defects in coated pipes", J. Sound Vib., 331, 3989-4004. https://doi.org/10.1016/j.jsv.2012.04.013
  27. Kirby, R., Zlatev, Z. and Mudge, P. (2013), "On the scattering of longitudinal elastic waves from axisymmetric defects in coated pipes", J. Sound Vib., 332, 5040-5058. https://doi.org/10.1016/j.jsv.2013.04.039
  28. Kolsky H. (1963), Stress Waves in Solids, Dover, New-York.
  29. Leonov, E., Michael, J.S.L. and Cawley, P. (2015), "Investigation of guided wave and attenuation in pipe buried in sand", J. Sound Vib., 347, 96-114. https://doi.org/10.1016/j.jsv.2015.02.036
  30. Lowe, P.S., Sanderson, R., Boulgouris, N.V. and Gan, TH. (2015), "Hybrid active focusing with adaptive dispersion for higher defect sensitivity in guided wave inspection of cylindrical structures", Non-Destruct. Test. Eval., Available: http://dx.doi.org/10.1080/10589759. 2015.1093628.
  31. Lowe, P.S., Sanderson, R.M., Boulgouris, N.V., Haig, A.G. and Balachandran, W. (2016), "Inspection of cylindrical structures using the first longitudinal guided wave mode in isolation for higher flaw sensitivity", IEEE Sens. J., 16, 706-714 https://doi.org/10.1109/JSEN.2015.2487602
  32. Mace, B.R. and Manconi, E. (2008), "Modelling wave propagation in two-dimensional structures using finite element analysis", J. Sound Vib., 318, 884-902. https://doi.org/10.1016/j.jsv.2008.04.039
  33. Manconi, E. and Mace, B.R. (2009), "Wave characterization of cylindrical and curved panels from finite element analysis", J. Acoust. Soc. Am., 125, 154-163. https://doi.org/10.1121/1.3021418
  34. Manconi, E. and Sorokin, S. (2013), "On the effect of damping on dispersion curves in plates", Int. J. Solid. Struct., 50, 1966-1973. https://doi.org/10.1016/j.ijsolstr.2013.02.016
  35. Mazotti, M., Marzani, A., Bartoli, I. and Viola, E. (2012), "Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method", Int. J. Solid. Struct., 49, 2359-2372. https://doi.org/10.1016/j.ijsolstr.2012.04.041
  36. Meral, C., Royston, T. and Magin, R.L. (2009), "Surface response of a fractional order viscoelastic halfspace to surface and subsurface sources", J. Acoust. Soc. Am., 126, 3278-3285. https://doi.org/10.1121/1.3242351
  37. Meral, C., Royston, T. and Magin, R.L. (2010), "Rayleigh-Lamb wave propagation on a fractional order viscoelastic plate", J. Acoust. Soc. Am., 129(2), 1036-1045. https://doi.org/10.1121/1.3531936
  38. Rabotnov, Y.N. (1948) "Equilibrium of an elastic medium with after-effect", Prikladnaya Mat ematika i Mekhanica, 12(1), 53-62. (in Russian) (English translation of this paper is in Fractional Calculus and Applied Analysis, 17(3), 684-696, 2014; DOI: 10.2478/s13540-014-0193-1)
  39. Rabotnov, Y.N. (1980), Elements of hereditary solid mechanics, Mir, Moscow.
  40. Rose, J.L. (2004), Ultrasonic waves in solid media, Cambridge University Press.
  41. Rossikhin, Y.A. (2010), "Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids", Appl. Mech. Rev., 63(1), 010701-1-12. https://doi.org/10.1115/1.4000246
  42. Rossikhin, Y.A. and Shitikova, M.V. (2014), "The simplest models of viscoelasticity involving fractional derivatives and their connectedness with the Rabotnov fractional order operators. Int. J. Mech., 8, 326-331.
  43. Sawicki, J.T. and Padovan, J. (1999). "Frequency driven phasic shifting and elastic-hysteretic portioning properties of fractional mechanical system representation schemes", J. Franklin Inst., 336, 423-433 https://doi.org/10.1016/S0016-0032(98)00036-2
  44. Simonetti, F. (2004), "Lamb wave propagation in elastic plates coated with viscoelastic materials", J. Acoust. Soc. Am., 115, 2041-2053. https://doi.org/10.1121/1.1695011
  45. Tamm, K. and Weiss, O. (1961), "Wellenausbreitung in unbergrenzten scheiben und in scheibensteinfrn", Acoustica, 11, 8-17.
  46. Weiss, O. (1959), "Uber die Schallausbreitung in verlusbehafteten median mit komplexen schub und modul", Acoustica, 9, 387-399.
  47. Yasar, T.K., Klatt, D., Magin, R.L. and Royston, T.J. (2013b), "Selective spectral displacement projection for multifrequency MRE", Phys. Med. Biology, 58, 5771-5781. https://doi.org/10.1088/0031-9155/58/16/5771
  48. Yasar, T.K., Royston, T.J. and Magin, R.L. (2013a), "Wideband MR elastography for viscoelasticity model identification", Mag. Reson. Med., 70, 479-489. https://doi.org/10.1002/mrm.24495
  49. Yu, J. (2011), "Viscoelastic shear horizontal wave in graded and layered plates", Int. J. Solid. Struct., 48, 2361-2372. https://doi.org/10.1016/j.ijsolstr.2011.04.011
  50. Yucel, M.K. (2015), "Signal processing methods for defect detection in multi-wire helical waveguides using ultrasonic guided waves", MsD Thesis, School of Engineering and Design, Brunel University, London