DOI QR코드

DOI QR Code

Relationships Between Vessel-lumen-area Time Series of Quercus spp. at Mt. Songni and Corresponding Climatic Factors

속리산 참나무류 도관내강면적연대기와 기후인자와의 관계분석

  • Jeong, Hyun-Min (Tree-ring Material Bank, Chungbuk National University,) ;
  • Kim, Yo-Jung (Tree-ring Material Bank, Chungbuk National University,) ;
  • Seo, Jeong-Wook (Department of Wood & Paper Science, College of Agriculture, Life and Environment Science, Chungbuk National University)
  • 정현민 (충북대학교 산학협력단부설 목재연륜소재은행) ;
  • 김요정 (충북대학교 산학협력단부설 목재연륜소재은행) ;
  • 서정욱 (충북대학교 농업생명환경대학 목재.종이과학과)
  • Received : 2016.12.07
  • Accepted : 2016.12.28
  • Published : 2017.01.25

Abstract

This study aimed to suggest a method to establish vessel-lumen-area chronologies in domestic Quercus spp. from Mt. Songni and to verify their potential as a climate proxy. In order to establish vessel-lumen-area chronologies, three options were applied to filter vessels. Options 1 and 2 use vessels having lumina larger than or equal to $6,000{\mu}m^2$ (MVA-60) and $7,500{\mu}m^2$ (MVA-75), respectively, to establish the chronologies by their mean values in each year, and option 3 uses the largest one (MAX) in each tree ring. MVA-60 and MVA-75 had mostly significant relationships with the winter precipitation between November in the previous year and January in the current year, however, MAX had only significant relationship with November precipitation in the previous year. Based on these results, it was verified that the potential of vessel lumina in domestic Quercus spp. could be a climate proxy in dendroclimatology.

본 연구는 국내 속리산 참나무류 도관내강면적연대기를 작성하고, 작성된 연대기가 기후프록시로써의 활용 가능성이 있는지 확인하기 위해 수행되었다. 도관내강면적연대기 작성을 위해 3가지 측정 방법이 이용되었다. 방법 1과 2는 도관내강면적이 각각 $6,000{\mu}m^2$ (MVA-60)와 $7,500{\mu}m^2$ (MVA-75) 이상인 것만 이용하여 평균값으로 연대기를 작성하는 것이고, 방법 3은 각 연륜에서 가장 큰 도관내강면적(MAX)만을 이용하여 연대기를 작성하는 것이다. MVA-60과 MVA-75는 전년도 11월부터 당년 1월까지인 겨울철 강수량과 유의성에 근접한 정의 상관을 나타냈으나, MAX는 전년도 11월에 대해서만 유의성 있는 정의 상관을 나타냈다. 본 연구결과를 근거로 국내 참나무류의 도관내강면적은 연륜기후학 분야에서 기후프록시로써 활용이 가능함이 확인되었다.

Keywords

References

  1. Abrantes, J., Campelo, F., Garcia-Gonzalez, I., Nabais, C. 2013. Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees-Structure and Function 27: 655-662. https://doi.org/10.1007/s00468-012-0820-6
  2. Alla, A.Q., Camarero, J.J. 2012. Contrasting responses of radial growth and wood anatomy to climate in a Mediterranean ring-porous oak: implications for its future persistence or why the variance matters more than the mean. European Journal of Forest Research 131(5): 1537-1550. https://doi.org/10.1007/s10342-012-0621-x
  3. Baillie, M.G.L., Pilcher, J.R. 1973. A simple cross-dating program for tree-ring research. Tree Ring Bulletin 33: 7-14.
  4. Briffa, K.R., Jones, P.D., Pilcher, J.R., Hughes, M.K.. 1988. Reconstructing summer temperatures in northern Fennoscandinavia back to A.D. 1700 using tree-ring data from Scots pine. Arctic and Alpine Research 20(4): 385-394. https://doi.org/10.2307/1551336
  5. Briffa, K., Jones, P.D. 1990. Basic chronology statistics and assessment. In Method of Dendrochronology (eds. Cook, ER and Kairiukstis L.A.), Kluwer Academic Publishers, Dordrecht, 137-152.
  6. Buntgen, U., Tegel, U., Nicoluss, K., McCormick, M., Frank, D., Kaplan, J.O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., Esper, J.. 2011. 2500 years of european climate variability and human susceptibility. Science 331(6017): 578-582. https://doi.org/10.1126/science.1197175
  7. Corcuera, L., Camarero, J.J., Siso, S., Gil-Pelegrin, E. 2006. Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees 20(1): 91-98. https://doi.org/10.1007/s00468-005-0016-4
  8. Deslauriers, A., Morin, H. 2005. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Tees 19: 402-408.
  9. Eckstein, D., Bauch, J. 1969. Beitrag zur Rationalisierung eines dendrochro-nologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88: 230-250. https://doi.org/10.1007/BF02741777
  10. Eilmann, B., Weber, P., Rigling, A., Eckstein, D. 2006. Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23(3): 121-132. https://doi.org/10.1016/j.dendro.2005.10.002
  11. Fan, Z.X., Brauning, A., Yang, B., Gao, K.F. 2009. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global and Planetary Change 65(1-2): 1-11. https://doi.org/10.1016/j.gloplacha.2008.10.001
  12. Fonti, P., Garcia-Gonzalez, I. 2004. Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytologist 163(1): 77-86. https://doi.org/10.1111/j.1469-8137.2004.01089.x
  13. Fonti, P., Garcia-Gonzalez, I. 2008. Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. Journal of Biogeography 35(12): 2249-2257. https://doi.org/10.1111/j.1365-2699.2008.01961.x
  14. Fonti, P., Eilmann, B., Garcia-Gonzalez, I., von Arx, G. 2009. Expeditious building of ring-porous earlywood vessel chronologies without loosing signal information. Trees 23: 665-671. https://doi.org/10.1007/s00468-008-0310-z
  15. Fonti, P, von Arx, G., Garcia-Gonzalez, I., Eilmann, B., Sass-Klaassen, U., Gärtner, H., Eckstein, D. 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist 185: 42-53. https://doi.org/10.1111/j.1469-8137.2009.03030.x
  16. Fonti, P., Heller, O., Cherubini, P., Rigling, A., Arend, M. 2013. Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biology 15: 210-219.
  17. Fritts, H.C. 1976. Tree Rings and Climate. Academic Press. London. 567 pp.
  18. Gagen, M., Zorita, E., McCarroll, D., Young, G.H., Grudd, H., Jalkanen, R., Loader, N.J., Robertson, I., Kirchhefer A. 2011. Cloud response to summer temperatures in Fennoscandia over the last thousand years. Geophysical Research Letters 38(5): L05701, DOI 10.1029/2010GL046216.
  19. Garcia-Gonzalez, I., Eckstein, D. 2003. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology 23(7): 497-504. https://doi.org/10.1093/treephys/23.7.497
  20. Garcia-Gonzalez, I., Fonti, P. 2008. Ensuring a representative sample of earlywood vessels for dendroecological studies: an example from two ring-porous species. Trees-Structure and Function 22: 237-244. https://doi.org/10.1007/s00468-007-0180-9
  21. Gartner, H., Cherubini, P., Fonti, P., von Arx, G., Schneider, L., Nievergelt D., Verstege, A., Bast, A., Schweingruber, F.H., Buntgen, U. 2015. A technical perspective in modern tree-ring research - how to overcome dendroecological and wood anatomical challenges. Journal of visualized Experiments 5(97).
  22. Gonzalez-Gonzalez, B., Rozas, V., Garcia-Gonzalez, I. 2014. Earlywood vessels of the sub-Mediterranean oak Quercus pyrenaica have greater plasticity and sensitivity than those of the temperate Q. petraea at the Atlantic-Mediterranean boundary. Trees-Structure and Function 24: 237-252.
  23. Grudd, H., Briffa, K.R., Karlén, W., Bartholin, T.S., Jones, P.D., Kromer, B. 2002. A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial time scales. The Holocene 12(6): 657-665. https://doi.org/10.1191/0959683602hl578rp
  24. Grudd, H. 2008. Tornetrask tree-ring width and density AD 500-2044: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Climate Dynamics 31: 843-857. https://doi.org/10.1007/s00382-007-0358-2
  25. Hardy, J.P., Groffman, P.M., Fitzhugh, R.D., Henry, K.S., Welman, A.T., Demers, J.D., Fahey, T.J., Driscoll, C.T., Tierney, G.L., Nolan, S. 2001. Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry 56: 151-174. https://doi.org/10.1023/A:1013036803050
  26. Kniesel, B. M., Gunther, B., Roloff, A., von Arx, G. 2015. Defining ecologically relevant vessel parameters in Quercus robur L. for use in dendroecology: a pointer year and recovery time case study in Central Germany. Trees - Structure and Function 29(4): 1041-1051. https://doi.org/10.1007/s00468-015-1183-6
  27. Korea Forest Service. 2016. Statistical yearbook of forestry. Vol. 46.
  28. Kwon, S.M., Kim, N.H. 2005. Annual ring formation of major wood species growing in Chuncheon, Korea(1) - the period of cambium activity -. Journal of the Korean Wood Sciences and Technology. 33(4): 1-8.
  29. Matisons, R., Brumelis, G. 2012. Influence of climate on tree-ring and earlywood vessel formation in Quercus robur in Latvia. Trees-Structure and Function 26: 1251-1266. https://doi.org/10.1007/s00468-012-0701-z
  30. McCarroll, D., Loader, N.J. 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23(7-8): 771-801. https://doi.org/10.1016/j.quascirev.2003.06.017
  31. National Institute of Forest Science, 2013, Estimation of greenhouse gas emissions of korean major timbers using life cycle assessment.
  32. Park, W.-K., Seo, J.-W. 2000. Reconstruction of May-June precipitation (253 years: A.D. 1746-1998) in east-coastal region (Yungdong) of Korea from tree rings of Pinus densiflora S. et Z. The Korean Journal of Quaternary Research 14: 87-99.
  33. Sass, U., Eckstein, D. 1995. The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees-Structure and Function 9(5): 247-252.
  34. Sass, U., Sabajo, C.R., Ouden, J. 2011. Vessel formation in relation to leaf phenology in pedunclulate oak and European ash. Dendrochronologia 29: 171-175. https://doi.org/10.1016/j.dendro.2011.01.002
  35. Seo, J.-W., Eckstein, D., Schmitt, U. 2007. The pinning method: from pinning to data preparation. Dendrochronologia 25: 79-86. https://doi.org/10.1016/j.dendro.2007.04.001
  36. Speer, J.H. 2010. Fundamentals of Tree-Ring Research. The University of Arizona Press. USA.
  37. Repo, T., Mononen, K., Alvila, L., Pakkanen, T.T., Hanninen, H. 2008. Cold acclimation of pedunculate oak (Quercus robur L.) at its northernmost distribution range. Environmental and Experimental Botany 63: 59-70. https://doi.org/10.1016/j.envexpbot.2007.10.023
  38. Um, T.W., Chun, J.H., Kim, K.H. 2009. Stand structure characteristics of oak wilt infected forest, Korea. Korean Journal of Environment and Ecology 23(2): 220-232.
  39. Woodcock, D.W. 1989. Climate sensitivity of wood-anatomical features in a ring-porous oak (Quercus macrocarpa). Canadian Journal of Forest Research 19: 639-644. https://doi.org/10.1139/x89-100