References
- Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433 https://doi.org/10.1128/jb.169.12.5429-5433.1987
- Lim KI (2015) Recent advances in developing molecular tools for targeted genome engineering of mammalian cells. BMB Rep 48, 6-12 https://doi.org/10.5483/BMBRep.2015.48.1.165
- Barrangou R, Fremaux C, Deveau H et al (2007) Crispr provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 https://doi.org/10.1126/science.1138140
- Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a crispr-cas system. Nat Biotechnol 31, 227-229 https://doi.org/10.1038/nbt.2501
- Deveau H, Garneau JE and Moineau S (2010) Crispr/cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64, 475-493 https://doi.org/10.1146/annurev.micro.112408.134123
- Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to crispr-encoded resistance in streptococcus thermophilus. J Bacteriol 190, 1390-1400 https://doi.org/10.1128/JB.01412-07
- Bhaya D, Davison M and Barrangou R (2011) Crispr-cas systems in bacteria and archaea: Versatile small rnas for adaptive defense and regulation. Annu Rev Genet 45, 273-297 https://doi.org/10.1146/annurev-genet-110410-132430
- Brouns SJ, Jore MM, Lundgren M et al (2008) Small crispr rnas guide antiviral defense in prokaryotes. Science 321, 960-964 https://doi.org/10.1126/science.1159689
- Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P and Siksnys V (2013) Crrna and tracrrna guide cas9- mediated DNA interference in streptococcus thermophilus. RNA Biol 10, 841-851 https://doi.org/10.4161/rna.24203
- Carte J, Christopher RT, Smith JT et al (2014) The three major types of crispr-cas systems function independently in crispr rna biogenesis in streptococcus thermophilus. Mol Microbiol 93, 98-112 https://doi.org/10.1111/mmi.12644
- Deltcheva E, Chylinski K, Sharma CM et al (2011) Crispr rna maturation by trans-encoded small rna and host factor rnase iii. Nature 471, 602-607 https://doi.org/10.1038/nature09886
- Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crrna ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586 https://doi.org/10.1073/pnas.1208507109
- Swarts DC, Mosterd C, van Passel MW and Brouns SJ (2012) Crispr interference directs strand specific spacer acquisition. PLoS One 7, e35888 https://doi.org/10.1371/journal.pone.0035888
- Cencic R, Miura H, Malina A et al (2014) Protospacer adjacent motif (pam)-distal sequences engage crispr cas9 DNA target cleavage. PLoS One 9, e109213 https://doi.org/10.1371/journal.pone.0109213
- Lee SH, Bae S (2016) Structural and dynamic views of the CRISPR-Cas system at the single-molecule level. BMB Rep 49, 201-207 https://doi.org/10.5483/BMBRep.2016.49.4.042
- Jiang W, Bikard D, Cox D, Zhang F and Marraffini LA (2013) Rna-guided editing of bacterial genomes using crispr-cas systems. Nat Biotechnol 31, 233-239 https://doi.org/10.1038/nbt.2508
- Iliakis G, Wang H, Perrault AR et al (2004) Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 104, 14-20 https://doi.org/10.1159/000077461
- Gu J and Lieber MR (2008) Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining. Genes Dev 22, 411-415 https://doi.org/10.1101/gad.1646608
- Aravind L and Koonin EV (2001) Prokaryotic homologs of the eukaryotic DNA-end-binding protein ku, novel domains in the ku protein and prediction of a prokaryotic doublestrand break repair system. Genome Res 11, 1365-1374 https://doi.org/10.1101/gr.181001
- Zhu S and Peng A (2016) Non-homologous end joining repair in xenopus egg extract. Sci Rep 6, 27797 https://doi.org/10.1038/srep27797
- Riballo E, Woodbine L, Stiff T, Walker SA, Goodarzi AA and Jeggo PA (2009) Xlf-cernunnos promotes DNA ligase iv-xrcc4 re-adenylation following ligation. Nucleic Acids Res 37, 482-492 https://doi.org/10.1093/nar/gkn957
- Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using crispr/cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
- Zu Y, Tong X, Wang Z et al (2013) Talen-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10, 329-331 https://doi.org/10.1038/nmeth.2374
- Thompson LH and Schild D (2001) Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res 477, 131-153 https://doi.org/10.1016/S0027-5107(01)00115-4
- Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R and Paull TT (2007) Sae2 is an endonuclease that processes hairpin DNA cooperatively with the mre11/rad50/xrs2 complex. Mol Cell 28, 638-651 https://doi.org/10.1016/j.molcel.2007.11.001
- Heyer WD, Ehmsen KT and Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44, 113-139 https://doi.org/10.1146/annurev-genet-051710-150955
- Motamedi MR, Szigety SK and Rosenberg SM (1999) Double-strand-break repair recombination in escherichia coli: Physical evidence for a DNA replication mechanism in vivo. Genes Dev 13, 2889-2903 https://doi.org/10.1101/gad.13.21.2889
- Szostak JW, Orr-Weaver TL, Rothstein RJ and Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33, 25-35 https://doi.org/10.1016/0092-8674(83)90331-8
- Walker FO (2007) Huntington's disease. Lancet 369, 218-228 https://doi.org/10.1016/S0140-6736(07)60111-1
- Trager U, Andre R, Lahiri N et al (2014) Htt-lowering reverses huntington's disease immune dysfunction caused by nfkappab pathway dysregulation. Brain 137, 819-833 https://doi.org/10.1093/brain/awt355
- Lopalco L (2010) Ccr5: From natural resistance to a new anti-hiv strategy. Viruses 2, 574-600 https://doi.org/10.3390/v2020574
- Kang X, He W, Huang Y et al (2016) Introducing precise genetic modifications into human 3pn embryos by crispr/cas-mediated genome editing. J Assist Reprod Genet 33, 581-588 https://doi.org/10.1007/s10815-016-0710-8