DOI QR코드

DOI QR Code

CRISPR as a strong gene editing tool

  • Shen, Shengfu (Willston Northampton School) ;
  • Loh, Tiing Jen (School of Life Sciences, Gwangju Institute of Science and Technology) ;
  • Shen, Hongling (School of Life Sciences, Gwangju Institute of Science and Technology) ;
  • Zheng, Xuexiu (School of Life Sciences, Gwangju Institute of Science and Technology) ;
  • Shen, Haihong (School of Life Sciences, Gwangju Institute of Science and Technology)
  • Received : 2016.07.28
  • Accepted : 2016.09.07
  • Published : 2017.01.31

Abstract

Clustered regularly-interspaced short palindromic repeats (CRISPR) is a new and effective genetic editing tool. CRISPR was initially found in bacteria to protect it from virus invasions. In the first step, specific DNA strands of virus are identified by guide RNA that is composed of crRNA and tracrRNA. Then RNAse III is required for producing crRNA from pre-crRNA. In The second step, a crRNA:tracrRNA:Cas9 complex guides RNase III to cleave target DNA. After cleavage of DNA by CRISPR-Cas9, DNA can be fixed by Non-Homologous End Joining (NHEJ) and Homology Directed Repair (HDR). Whereas NHEJ is simple and random, HDR is much more complex and accurate. Gene editing by CRISPR is able to be applied to various biological field such as agriculture and treating genetic diseases in human.

Keywords

References

  1. Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433 https://doi.org/10.1128/jb.169.12.5429-5433.1987
  2. Lim KI (2015) Recent advances in developing molecular tools for targeted genome engineering of mammalian cells. BMB Rep 48, 6-12 https://doi.org/10.5483/BMBRep.2015.48.1.165
  3. Barrangou R, Fremaux C, Deveau H et al (2007) Crispr provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 https://doi.org/10.1126/science.1138140
  4. Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a crispr-cas system. Nat Biotechnol 31, 227-229 https://doi.org/10.1038/nbt.2501
  5. Deveau H, Garneau JE and Moineau S (2010) Crispr/cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64, 475-493 https://doi.org/10.1146/annurev.micro.112408.134123
  6. Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to crispr-encoded resistance in streptococcus thermophilus. J Bacteriol 190, 1390-1400 https://doi.org/10.1128/JB.01412-07
  7. Bhaya D, Davison M and Barrangou R (2011) Crispr-cas systems in bacteria and archaea: Versatile small rnas for adaptive defense and regulation. Annu Rev Genet 45, 273-297 https://doi.org/10.1146/annurev-genet-110410-132430
  8. Brouns SJ, Jore MM, Lundgren M et al (2008) Small crispr rnas guide antiviral defense in prokaryotes. Science 321, 960-964 https://doi.org/10.1126/science.1159689
  9. Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P and Siksnys V (2013) Crrna and tracrrna guide cas9- mediated DNA interference in streptococcus thermophilus. RNA Biol 10, 841-851 https://doi.org/10.4161/rna.24203
  10. Carte J, Christopher RT, Smith JT et al (2014) The three major types of crispr-cas systems function independently in crispr rna biogenesis in streptococcus thermophilus. Mol Microbiol 93, 98-112 https://doi.org/10.1111/mmi.12644
  11. Deltcheva E, Chylinski K, Sharma CM et al (2011) Crispr rna maturation by trans-encoded small rna and host factor rnase iii. Nature 471, 602-607 https://doi.org/10.1038/nature09886
  12. Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crrna ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586 https://doi.org/10.1073/pnas.1208507109
  13. Swarts DC, Mosterd C, van Passel MW and Brouns SJ (2012) Crispr interference directs strand specific spacer acquisition. PLoS One 7, e35888 https://doi.org/10.1371/journal.pone.0035888
  14. Cencic R, Miura H, Malina A et al (2014) Protospacer adjacent motif (pam)-distal sequences engage crispr cas9 DNA target cleavage. PLoS One 9, e109213 https://doi.org/10.1371/journal.pone.0109213
  15. Lee SH, Bae S (2016) Structural and dynamic views of the CRISPR-Cas system at the single-molecule level. BMB Rep 49, 201-207 https://doi.org/10.5483/BMBRep.2016.49.4.042
  16. Jiang W, Bikard D, Cox D, Zhang F and Marraffini LA (2013) Rna-guided editing of bacterial genomes using crispr-cas systems. Nat Biotechnol 31, 233-239 https://doi.org/10.1038/nbt.2508
  17. Iliakis G, Wang H, Perrault AR et al (2004) Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 104, 14-20 https://doi.org/10.1159/000077461
  18. Gu J and Lieber MR (2008) Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining. Genes Dev 22, 411-415 https://doi.org/10.1101/gad.1646608
  19. Aravind L and Koonin EV (2001) Prokaryotic homologs of the eukaryotic DNA-end-binding protein ku, novel domains in the ku protein and prediction of a prokaryotic doublestrand break repair system. Genome Res 11, 1365-1374 https://doi.org/10.1101/gr.181001
  20. Zhu S and Peng A (2016) Non-homologous end joining repair in xenopus egg extract. Sci Rep 6, 27797 https://doi.org/10.1038/srep27797
  21. Riballo E, Woodbine L, Stiff T, Walker SA, Goodarzi AA and Jeggo PA (2009) Xlf-cernunnos promotes DNA ligase iv-xrcc4 re-adenylation following ligation. Nucleic Acids Res 37, 482-492 https://doi.org/10.1093/nar/gkn957
  22. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using crispr/cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
  23. Zu Y, Tong X, Wang Z et al (2013) Talen-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10, 329-331 https://doi.org/10.1038/nmeth.2374
  24. Thompson LH and Schild D (2001) Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res 477, 131-153 https://doi.org/10.1016/S0027-5107(01)00115-4
  25. Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R and Paull TT (2007) Sae2 is an endonuclease that processes hairpin DNA cooperatively with the mre11/rad50/xrs2 complex. Mol Cell 28, 638-651 https://doi.org/10.1016/j.molcel.2007.11.001
  26. Heyer WD, Ehmsen KT and Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44, 113-139 https://doi.org/10.1146/annurev-genet-051710-150955
  27. Motamedi MR, Szigety SK and Rosenberg SM (1999) Double-strand-break repair recombination in escherichia coli: Physical evidence for a DNA replication mechanism in vivo. Genes Dev 13, 2889-2903 https://doi.org/10.1101/gad.13.21.2889
  28. Szostak JW, Orr-Weaver TL, Rothstein RJ and Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33, 25-35 https://doi.org/10.1016/0092-8674(83)90331-8
  29. Walker FO (2007) Huntington's disease. Lancet 369, 218-228 https://doi.org/10.1016/S0140-6736(07)60111-1
  30. Trager U, Andre R, Lahiri N et al (2014) Htt-lowering reverses huntington's disease immune dysfunction caused by nfkappab pathway dysregulation. Brain 137, 819-833 https://doi.org/10.1093/brain/awt355
  31. Lopalco L (2010) Ccr5: From natural resistance to a new anti-hiv strategy. Viruses 2, 574-600 https://doi.org/10.3390/v2020574
  32. Kang X, He W, Huang Y et al (2016) Introducing precise genetic modifications into human 3pn embryos by crispr/cas-mediated genome editing. J Assist Reprod Genet 33, 581-588 https://doi.org/10.1007/s10815-016-0710-8