DOI QR코드

DOI QR Code

On the Riemann mapping theorem and Riemann's original proof-argument

리만 함수정리와 리만의 증명에 관하여

  • Received : 2016.10.31
  • Accepted : 2016.12.24
  • Published : 2017.02.28

Abstract

The original proof-argument of Riemann in 1851 for the Riemann mapping theorem, one of the most central theorems in Complex analysis, was found faulty and essentially buried underneath the proof by $Carath{\acute{e}}odory$ of 1929, now accepted as the "textbook" proof. On the other hand, the original Riemann's "proof" was rediscovered and made correct by R.E. Greene and the author of this article in 2016. In this article, we try to shed lights onto the history related to the Riemann mapping theorem and the surrounding developments of 1850-1930 by reflecting upon the main flow of ideas and methods of the proof by R. E. Greene and K.-T. Kim.

Keywords

References

  1. L. V. AHLFORS, An introduction to the theory of analytic functions of one complex variable, Second edition, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co, 1966. xiii+317 pp.
  2. C. CARATHEODORY, Untersuchungen uber die konformen Abbildungen von festen und veranderlichen Gebieten, Math. Ann. 72(1) (1912), 107-144. https://doi.org/10.1007/BF01456892
  3. R. E. GREENE, KIM K.-T., The Riemann mapping theorem from Riemann's viewpoint, http://www.arxiv.org., (2016); To appear in Complex Analysis and its Synergies.
  4. R. E. GREENE, S. G. KRANTZ, Function theory of one complex variable, Third edition, Graduate Studies in Mathematics 40, American Mathematical Society, 2006. x+504 pp.
  5. H. von KOCH, Une methode geometrique elementaire pour l'etude de certaines questions de la theorie des courbes planes, Acta Math. 30(1) (1906), 145-174. https://doi.org/10.1007/BF02418570
  6. M. H. A. NEWMAN, Elements of the topology of plane sets of points, 2nd ed, Cambridge University Press, 1951. vii+214 pp.
  7. W. OSGOOD, On the existence of the Green's function for the most general simply connected plane region, Trans. Amer. Math. Soc. 1(3) (1900), 310-314. https://doi.org/10.1090/S0002-9947-1900-1500539-2
  8. O. PERRON, Eine neue Behandlung der ersten Randwertaufgabe fur ${\Delta}u$=0, Math. Z. 18(1) (1923), 42-54. https://doi.org/10.1007/BF01192395
  9. R. REMMERT, Classical topics in complex function theory, Translated from the German by Leslie Kay, Graduate Texts in Mathematics 172, Springer-Verlag, New York, 1998. xx+349 pp.
  10. G. F. B. RIEMANN, Grundlagen fur eine allgemeine Theorie der Funktionen einer veranderlichen complexen Grosse, Inaugraldissertation, Gottingen, 1851. Zweiter unveranderter Abdruck, Gottinger 1867.
  11. H. A. SCHWARZ, Conforme Abbildung der Oberflache eines Tetraeders auf die Oberflache einer Kugel, J. Reine Angew. Math. 70 (1869), 121-136.
  12. J. WALSH, History of the Riemann mapping theorem, Amer. Math. Monthly 80 (1973), 270-276. https://doi.org/10.2307/2318448