DOI QR코드

DOI QR Code

Tribological Characteristics of C/C-SiC-Cu Composite and Al/SiC Composite Materials under Various Contact Conditions

접촉 조건에 따른 C/C-SiC-Cu복합재와 Al/SiC복합재의 마모 특성에 관한 연구

  • 김병국 (연세대학교 기계공학부) ;
  • 신동갑 (연세대학교 기계공학부) ;
  • 김창래 (연세대학교 기계공학부) ;
  • 구병춘 (한국철도기술연구원 교통신기술연구실) ;
  • 김대은 (연세대학교 기계공학부)
  • Received : 2016.06.01
  • Accepted : 2016.10.03
  • Published : 2017.01.01

Abstract

The surface temperature of disc brakes varies during braking, which can affect the friction and wear behavior of braking systems. In order to develop an efficient braking system, the friction and wear behaviors of brake materials need to be clearly understood. In this work, the friction and wear behavior of the C/C-SiC-Cu composite and the Al/SiC composite, which are used in disc braking systems, were investigated. Both the surface temperature and contact pressure were studied. A pin-on-reciprocating tribotester was used for this purpose, in order to control temperature and load. Results showed that the friction varied significantly with temperature and sliding distance. It was found that a transfer layer of compacted wear debris formed on the wear track of the two materials. These layers caused the surface roughness of the wear track to increase. The outcome of this work is expected to serve as a basis for the development of braking systems under various operating conditions.

디스크 브레이크의 온도는 제동 시 변할 수 있으며 이러한 표면 온도의 변화는 마찰/마모 특성에 영향을 줄 수 있다. 따라서 효율이 우수한 브레이크 개발을 위해서는 브레이크 소재의 마찰/마모 특성에 대한 이해가 필요하다. 본 연구에서는 디스크 브레이크 시스템에 사용되는 C/C-SiC-Cu복합재와 Al/SiC복합재에 대하여 표면 온도와 접촉압력에 따른 마찰/마모 특성을 비교하였다. 이를 위해 온도 및 하중조절이 가능한 pin-on-reciprocating방식의 마찰실험기를 사용하였다. 실험결과, 마찰은 온도와 거리에 따라 현저하게 변하였다. 또한 마모로 인하여 생성된 입자가 접촉 압력에 의해 표면에 뭉쳐져 transfer layer가 형성되었고, 표면 거칠기가 증가하였다. 이러한 연구 결과는 다양한 조건에서 작동하는 브레이크 시스템 개발을 위한 기초자료로 활용될 수 있을 것이다.

Keywords

References

  1. Laden, K., Guerin, J. D., Watremez, M. and Bricout, J. P., 2000, "Frictional Characteristics of Al-SiC Composite Brake Discs," Tribolology Letters, Vol. 8, No. 4, pp. 237-247. https://doi.org/10.1023/A:1019159923619
  2. Lyu, M. Y. and Choi, T. G., 2015, "Research Trends in Polymer Materials for Use in Lightweight Vehicles," International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 1, pp. 213-220. https://doi.org/10.1007/s12541-015-0029-x
  3. Hwang, W. C., Yang, Y. J., Cha, C. S., Jung, J. A., Kim, J. H., Im, K. H., Kim, S. K. and Yang, I. Y., 2015, "Impact Collapse Behavior of CFRP Structural Members According to the Variation of Section Shapes and Stacking Angles," International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 4, pp. 677-684. https://doi.org/10.1007/s12541-015-0090-5
  4. Grigoratos, T. and Martini, G., 2015, "Brake Wear Particle Emissions: a Review," Environmental Science and Pollution Research, Vol. 22, No. 4, pp. 2491-2504. https://doi.org/10.1007/s11356-014-3696-8
  5. Krenkel, W., Heidenreich, B. and Renz, R., 2002, "C/C-SiC Composites for Advanced Friction Systems," Advanced Engineering Materials, Vol. 4, No. 7, pp. 427-436. https://doi.org/10.1002/1527-2648(20020717)4:7<427::AID-ADEM427>3.0.CO;2-C
  6. Jang, G. H., Cho, K. H., Park, S. B., Lee, W. G., Hong, U. S. and Jang, H., 2010, "Tribological Properties of C/C-SiC Composites for Brake Discs," Metals and Materials International, Vol. 16, No. 1, pp. 61-66. https://doi.org/10.1007/s12540-010-0061-4
  7. Abdo, J., Shamseldeen, E. and Lafdee, K., 2008, "Humidity Effects on Carbon-carbon Composites (fiber pre-form+ CVI)," Materials Science and Engineering: A, Vol. 472, No. 1-2, pp. 2-14. https://doi.org/10.1016/j.msea.2007.05.042
  8. Quian, Y., Zhang, W., Ge, M. and Wei, X., 2013 "Frictional Response of a Novel C/C-ZrB2-ZrCSiC Composite Under Simulated Braking," Journal of Advanced Ceramics, Vol. 2, No. 2, pp.157-161. https://doi.org/10.1007/s40145-013-0055-z
  9. Li, Z., Liu, Y., Zhang, B., Lu, Y., Li, Y. and Xiao, P., 2016, "Microstructure and Tribological Characteristics of Needled C/C-SiC Brake Composites Fabricated by Simultaneous Infiltration of Molten Si and Cu," Tribolology International, Vol. 93, pp. 220-228. https://doi.org/10.1016/j.triboint.2015.08.047
  10. El-Hija, H. A., Krenkel, W. and Hugel, S., 2005, "Development of C/C-SiC Brake Pads for Highperformance Elevators," International Journal of Applied Ceramic Technology, Vol. 2, No. 2, pp. 105-113. https://doi.org/10.1111/j.1744-7402.2005.02012.x
  11. Anoop, S., Natarajan, S. and Babu, S. P. K., 2009, "Analysis of Factors Influencing Dry Sliding Wear Behaviour of Al/SiCp-brake Pad Tribosystem," Materials and Design, Vol. 30, No. 9, pp. 3831-3838. https://doi.org/10.1016/j.matdes.2009.03.034
  12. Stadler, Z., Krnel, K. and Kosmac, T., 2007, "Friction Behavior of Sintered Metallic Brake Pads on a C/C-SiC Composite Brake Disc," Journal of the European Ceramic Society, Vol. 27, No. 2-3, pp. 1411-1417. https://doi.org/10.1016/j.jeurceramsoc.2006.04.032
  13. Shu, Y., Jie, C., Qizhong, H., Xiang, X., Tong, C. and Yunping, Li., 2010, "Effect of Braking Speeds on the Tribological Properties of Carbon/Carbon Composites," Materials Transactions, Vol. 51, No. 5, pp. 1038-1043. https://doi.org/10.2320/matertrans.M2009390
  14. Jang, D. K. and Kim, D. E., 2003, "Friction and Wear Characteristics and Reliability Estimation of Aircraft Brake System," Journal of the Korean Society for Precision Engineering, Vol. 20, No. 11, pp. 127-133.
  15. Gomes, J. R., Silva, O. M., Silva, C. M., Pardini, L. C. and Silva, R. F., 2001, "The Effect of Sliding Speed and Temperature on the Tribological Behaviour of Carbon-Carbon Composites," Wear, Vol. 249, No. 3-4, pp. 240-245. https://doi.org/10.1016/S0043-1648(01)00554-3
  16. Verma, P. C., Ciudin, R., Bonfanti, A., Aswath, P., Straffelini, G. and Gialanella, S., 2016, "Role of the Friction Layer in the High-temperature Pin-on-disc Study of a Brake Material," Wear, Vol. 346-347, pp. 56-65. https://doi.org/10.1016/j.wear.2015.11.004
  17. Cho, M. H., Cho, K. H., Kim, S. J., Kim, D. H. and Jang, H., 2005, "The Role of Transfer Layers on Friction Characteristics in the Sliding Interface Between Friction Materials Against Gray Iron Brake Disks," Tribology Letters, Vol. 20, No. 2, pp. 101-108. https://doi.org/10.1007/s11249-005-8299-6
  18. Osterle, W., and Urban, I., 2004, "Friction Layers and Friction Films on PMC Brake Pads," Wear, Vol. 257, No. 1-2, pp. 215-226. https://doi.org/10.1016/j.wear.2003.12.017
  19. Rhee, S. K., Jacko, M. G. and Tsang, P. H. S., 1991, "The Role of Friction Film in Friction, Wear and Noise of Automotive Brakes," Wear, Vol. 146, No. 1, pp. 89-97. https://doi.org/10.1016/0043-1648(91)90226-K
  20. Goo, B. C. and Kim, M. H., 2012, "Characteristics of A356/SiCp and A390/SiCp Composites," Journal of Mechanical Science and Technology, Vol. 26, No. 7, pp. 2097-2100. https://doi.org/10.1007/s12206-012-0522-4
  21. Kim, H. J. and Kim, D. E., 2009, "Nano-scale Friction: a Review," International Journal of Precision Engineering and Manufacturing, Vol. 10, No. 2, pp. 141-151. https://doi.org/10.1007/s12541-009-0039-7
  22. Sim, M. S., Kim, D. H. and Lee, C. M., 2015, "The Effect of Surface Roughness According to Machining Conditions of Test Specimen for Precision Micromilling Machining," Journal of the Korean Society for Precision Engineering, Vol. 32, No. 1, pp. 49-55. https://doi.org/10.7736/KSPE.2015.32.1.49
  23. Kim, Y. B., Hwang, Y., An, J. H., Kim, J. H., Kim, H. J. and Kim, D. S., 2015, "Improvement in Surface Roughness by Multi Point B Axis Control Method in Diamond Turning Machine," Journal of the Korean Society for Precision Engineering, Vol. 32, No. 11, pp. 983-988. https://doi.org/10.7736/KSPE.2015.32.11.983