DOI QR코드

DOI QR Code

Liquid Flow Characteristics in 3D-Printed Rectangular Microchannel

3D 프린터 마이크로채널 제작 및 액상 물의 압력강하 특성에 관한 연구

  • Park, Jaehyun (Graduate school of Mechanical Engineering, Changwon Nati'l Univ.) ;
  • Park, Heesung (Graduate school of Mechanical Engineering, Changwon Nati'l Univ.)
  • 박재현 (창원대학교 대학원 기계공학과) ;
  • 박희성 (창원대학교 대학원 기계공학과)
  • Received : 2016.08.04
  • Accepted : 2016.09.27
  • Published : 2017.01.01

Abstract

The validity of friction factor theory, based upon conventional-sized passages for microchannel flows, is an active area of research. The high surface to volume ratio of a microchannel offers many advantages over macroscale devices and processes. This study focused on the laminar flow (16$161{\mu}m$ to $664{\mu}m$ for single-phase liquid flow. A controllable syringe pump was used to provide flow while a differential pressure transducer was used to record the pressure drop. These results demonstrated that a 3D printer can drastically simplify custom microchannel fabrication and still support complex features, which are typically only accessible with advanced fabrication techniques.

마이크로채널은 단위체적당 표면적비가 높기 때문에 컴퓨터 마이크로 프로세서 냉각, 정밀 화학분석 및 바이오 분야로의 응용이 다양하게 적용 될 수 있어 많은 연구가 진행 중이다. 본 연구에서는 3D 프린터를 이용하여 사각 마이크로채널을 제작하였고, 실험에서 마이크로채널을 통과하는 액상 물은 탈이 온수를 사용하여 유량변화에 대한 압력강하를 측정하였다. 마이크로채널의 크기는 $161{\mu}m$에서 $664{\mu}m$로 변화시켜 제작하였으며, 유동의 레이놀즈 수는 16

Keywords

References

  1. Jeon, S., Lee, K. and Moon, D., 2011, "Numerical Study on the Performance of a Microchannel Heat Exchanger with a Novel Channel Array," Trans. Korean Soc. Mech. Eng, B, Vol. 35, No. 11, pp. 1119-1126. https://doi.org/10.3795/KSME-B.2011.35.11.1119
  2. Mawatari, K., Kazoe, Y., Shimizu, H., Pihosh, Y. and Kitamori, T., 2014, "Fundamantal Technologies, Unique Liquid Properties, and Application in Chemical and Bio Analysis Methods and Devices," American Chemical Society, 86, pp. 4068-4077.
  3. Lee, J. and Lee, K., 2015, "Prediction of Two-phase Taylor Flow Characteristics in a Rectangular Microchannel," Trans. Korean Soc. Mech. Eng, B, Vol. 39, No. 7, pp. 557-566. https://doi.org/10.3795/KSME-B.2015.39.7.557
  4. Bucci, A., Celata, G. P., Cumo, M., Serra, E. and Zummo, G., 2003, "Water Single-phase Fluid Flow and Heat Transfer in Capillary Tubes," ICMM2003-1037.
  5. Mirmanto, Kenning, D. B. R. Lewis, J. S. and Karayiannis, T. G., 2012, "Pressure Drop and Heat Transfer Characteristics for Single-phase Developing Flow of Water in Rectangular Microchannels," 6th European Thermal Sciences conference.
  6. Park, H., 2009, "A Microchannel Heat Exchanger Design for Microelectronics Cooling Correlating the Heat Transfer Rate in Terms of Brinkman Number," Microsyst Technol 15:1373-1378. https://doi.org/10.1007/s00542-009-0900-8
  7. Sahar, A. M., Oezemir, M. R., Fayyadh, E. M. Wissink, J., Mahmoud, M. M. and Karayiannis, T. G., 2016," Single-phase Flow Pressure Drop and Heat Transfer in Rectangular Metallic Microchannels," Applied Thermal Engineering 93, pp. 1324-1336. https://doi.org/10.1016/j.applthermaleng.2015.08.087
  8. Asadi, M., Xie, G. and Sunden, B., 2014, "A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-phase Microchannles," International Journal of Heat and Mass Transfer 79, pp. 34-53. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.090
  9. Mohammed, H. A., Bhaskaran, G., Shuaib, N. H. and Saidur, R., 2011, "Heat Transfer and Fluid Flow Characteristics in Microchannels Heat Exchanger using Nanofluis: A Review," Renewable and Sustainable Energy Reviews 15, pp. 1502-1512. https://doi.org/10.1016/j.rser.2010.11.031
  10. Park, H. and Punch, J., 2008, "Friction Factor and Heat Transfer in Multiple Microchannels with Uniform Flow Distribution," International Journal of heat and Mass Transfer 51, pp. 4535-4543. https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.009
  11. Mun, J. and Kim, S., 2011, "Study in Heat Transfer Characteristics for Single-phase Flow in Rectangular Microchannels," Trans. Korean Soc. Mech. Eng B, Vol. 35, No. 9, pp. 891-896. https://doi.org/10.3795/KSME-B.2011.35.9.891
  12. Hrnjak, P. and Tu, X., 2007, "Single Phase Pressure Drop in Microchannels," International Journal of heat and Fluid Flow 28, 2-14. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.005
  13. Pfund, D., Rector, D., Shekarriz, A. Popescu. A. and Welty, J., 2000, "Pressure Drop Measurement in a Microchannel," AIChE Journal, Vol. 46, No. 8.
  14. Papautsky, I., Gale, B. K., Mohanty, S., Ameel. T. A. and Frazier, A. B., "Effects of Rectangular Microchannel Aspect Ratio on Laminar Friction Constant,".
  15. Bahrami, M., Yovanovich, M. M. and Culham, J. R., 2005, "Pressure Drop of Fully-developed, Laminar Flow in Microchannels of Arbitrary Cross-section," ICMM 2005-75109.
  16. Akbari, M., Sinton, D. and Bahrami, M., 2009, "Pressure Drop in Rectangular Microchannels as Compared with Theory Based on Arbitrary Cross Section," Journal of Fluids Engineering, Vol. 131, 041202-1. https://doi.org/10.1115/1.3077143
  17. Judy, J., Maynes, D. and Webb, B. W., 2002, "Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels," International Journal of Heat and Mass Transfer 45, pp. 3477-3489. https://doi.org/10.1016/S0017-9310(02)00076-5
  18. Peiyi, W. and Little, W. A., 1983, "Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thomson refrigerators," Cryogenics, Vol. 23, pp. 273-277. https://doi.org/10.1016/0011-2275(83)90150-9
  19. Son, S., Han, S., Sung, I. and Kim, W., 2013, "Surface Smoothing of Blastes Glass Micro-channels using Abrasive Waterjet," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 12, pp. 1159-1165. https://doi.org/10.3795/KSME-B.2013.37.12.1159
  20. Joo, B., Baek, S. and Oh, S., 2006, "Micro Channel Forming with Ultrathin Metal Foil, 2006," Trans. Korean Soc. Mech. Eng. A, Vol. 30, No. 2, pp. 159-163.
  21. Connor, J. O., Punch, J., Jeffers, N. and Stafford, J., 2014, "A Dimensional Comparison Between Embedded 3D-printed and Silicon Microchannels," Journal of Physics 2014, 012009.
  22. Aritome, K., Bula, W. P., Sakamoto, K., Murakam, Y. and Miyake, R., 2013, "3D Printed Microfluidic Devices and Reconfigurable Analysis System," 17th International Conference in Miniaturized Systems for Chemistry and Life Sciences.
  23. White, F. M., 1994, Fluid Mechnics, Third ed., McGraw-Hill.
  24. Kays, W. M. and Crawford, M. E., 1993, Convective Heat and Mass Transfer, third ed., McGraw-Hill.
  25. Bejan, A., 1990, Convection Heat Transfer, Wiley.
  26. Knight, R. W., Hall, D. J., Goodling, J. S. and Jaeger, R. C., 1992, "Heat Sink Optimization with Application to Microchannels," IEEE Trans. Compon., Hybr., Manufact. Technol. 15, pp. 832-842. https://doi.org/10.1109/33.180049
  27. Comina, G., Suska, A. and Filippini, D., 2015, "3D Printed Unibody Lab-on-a-chip: Features Survey and Check-valves Integration," Micromachines 2015, Vol. 6, pp. 437-451. https://doi.org/10.3390/mi6040437
  28. Steinke, M. E. and Kandlikar, S. G., 2006, "Single-phase Liquid Friction Factors in Microchannels," International Journal of Thermal Sciences 45, pp. 1073-1083. https://doi.org/10.1016/j.ijthermalsci.2006.01.016