References
- Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012
- Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Gilles, P.C. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., ASCE, 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)
- Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9
- Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
- Cho, N., Martin, C.D. and Sego, D.C. (2008), "Development of a shear zone in brittle rock subjected to direct shear", J. Rock Mech. Min. Sci., 45(8), 1335-1346. https://doi.org/10.1016/j.ijrmms.2008.01.019
- Gehle, C. and Kutter, H.K. (2003), "Breakage and shear behavior of intermittent rock joints", J. Rock Mech. Min. Sci., 40(5), 687-700. https://doi.org/10.1016/S1365-1609(03)00060-1
- Ghazvinian, A., Nikudel, M.R. and Sarfarazi, V. (2007), Effect of Rock Bridge Continuity and Area on Shear Behavior of Joints, 11th Congress of the International Society for Rock Mechanics, Lisbon, Portugal.
- Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar nonpersistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2
- Haeri, H. (2011), "Numerical modeling of the interaction between micro and macro cracks in the rock fracture mechanism using displacement discontinuity method", Ph.D. Dissertation, Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Haeri, H. (2015d), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
- Haeri, H. (2015e), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
- Haeri, H. (2015f), "Experimental crack analysis of rock-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896. https://doi.org/10.12989/cac.2015.16.6.881
- Haeri, H. and Ahranjani, A.K. (2012), "A fuzzy logic model to Predict crack propagation angle under Disc Cutters of TBM", J. Academic Res., 4(3), 156-169.
- Haeri, H. and Sarfarazi, V. (2016), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-112. https://doi.org/10.12989/cac.2016.17.1.107
- Haeri, H., Khaloo, K. and Marji, M.F. (2015b), "Experimental and numerical analysis of Brazilian discs with multiple parallel cracks", Arabian J. Geosci., 8(8), 5897-5908 https://doi.org/10.1007/s12517-014-1598-1
- Haeri, H., Marji, M.F. and Shahriar, K. (2015a), "Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM", Arabian J. Geosci., 8(6), 3915-3927. https://doi.org/10.1007/s12517-014-1489-5
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013a), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the 13th International Conference on Fracture, China.
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013b), "Simulating the bluntness of TBM disc cutters in rocks using displacement discontinuity method", Proceedings of the 13th International Conference on Fracture, China.
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014a), "On the cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression", J. Central South Univ., 21(6), 2404-2414. https://doi.org/10.1007/s11771-014-2194-y
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014b), "Investigating the fracturing process of rock-like Brazilian discs containing three parallel cracks under compressive line loading", Strength Mater., 46(3), 133-148.
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2015c), "The HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances", Arabian J. Geosci., 8(5), 2841-2852. https://doi.org/10.1007/s12517-014-1290-5
- Itasca Consulting Group Inc (2004), "Particle flow code in 2-dimensions (PFC2D)", Minneapolis
- Jaeger, J.C. (1971), "Friction of rocks and stability of rock slopes", Geotech., 21(2), 97-134. https://doi.org/10.1680/geot.1971.21.2.97
- Jiang, S., Du, C. and Gu, C. (2014), "An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. https://doi.org/10.12989/sem.2014.49.5.597
- Kumar, S. and Barai, S.V. (2012), "Size-effect of fracture parameters for crack propagation in concrete: A comparative study", Comput. Concrete, 9(1), 1-19. https://doi.org/10.12989/cac.2012.9.1.001
- Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-cracked marble", J. Solid. Struct., 42(9), 2505-2016. https://doi.org/10.1016/j.ijsolstr.2004.09.033
- Mohamed, A.R. and Hansen, W. (1999), "Micromechanical modelling of concrete response under static loading-Part I: Model development and validation", ACI Mater. J., 96(2), 196-203.
- Mughieda, O. and Alzo'ubi, A.K. (2004), "Fracture mechanisms of offset rock joints-A laboratory investigation", Geotech. Geol. Eng., 22(4), 545-562. https://doi.org/10.1023/B:GEGE.0000047045.89857.06
- Mughieda, O. and Karasneh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geol. Eng., 24(4), 985-999. https://doi.org/10.1007/s10706-005-8352-0
- Mughieda, O.S. and Khawaldeh, I. (2004), "Scale effect on engineering properties of open non-persistent rock joints under uniaxial loading", Proceedings of the 7th Regional Rock Mechanics Symposium, Sivas, Turkey.
- Olson, J.E. and Pollard, D.D. (1991), "The initiation and growth of en-echelon veins", J. Struct. Geol., 13(5), 595-608. https://doi.org/10.1016/0191-8141(91)90046-L
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
- Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock model material in uniaxial compression", J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8
- Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
- Sarfarazi, V., Haeri, H. and Khaloo, A. (2016), "The effect of nonpersistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
- Vonk, R.A., Rutten, H.S., Van Mier, J.G.M. and Funeman, H.J. (1991), "Micromechanical simulation of concrete softening", Proceedings of the International RILEM/ESIS Conference Fracture Processes in Concrete, Rock and Ceramics, E. & FN, London.
- Wasantha, P.L.P., Ranjith, P.G. and Shao, S.S. (2014b), "Energy monitoring and analysis during deformation of bedded sandstone: Use of acoustic emission", Ultras., 54(1), 217-226. https://doi.org/10.1016/j.ultras.2013.06.015
- Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3
- Wong, R.H.C., Chau, K.T., Tang, C.A. and Lin, P. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-Part I: Experimental approach", J. Rock Mech. Min. Sci., 38(7), 909-924. https://doi.org/10.1016/S1365-1609(01)00064-8
- Xie, Z., Peng, F. and Zhao, T. (2014), "Experimental study on fatigue crack propagation of fiber metal laminates", Steel Compos. Struct., 17(2), 145-157. https://doi.org/10.12989/scs.2014.17.2.145
- Yang, S.Q., Dai, Y.H., Han, L.J. and Jin, Z.Q. (2009), "Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression", Eng. Fract. Mech., 76(12), 1833-1845. https://doi.org/10.1016/j.engfracmech.2009.04.005
- Yang, S.Q., Jiang, Y.Z., Xu, W.Y. and Chen, X.Q. (2008), "Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression", J. Sol. Struct., 45(17), 4796-4819. https://doi.org/10.1016/j.ijsolstr.2008.04.023
- Zhang, H.Q., Zhao, Z.Y., Tang, C.A. and Song, L. (2006), "Numerical study of shear behavior of intermittent rock joints with different geometrical parameters", J. Rock Mech. Min. Sci., 43(5), 802-816. https://doi.org/10.1016/j.ijrmms.2005.12.006
- Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking process in rocklike material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z
- Zhang, X.P. and Wong, R.H.C. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1
- Zhao, Y.H., Liang, H.H., Huang, J.F., Geng, J.D. and Wang, R. (1995), "Development of subcracks between en echelon fractures in rock plates", Pure Appl. Geophys., 145, 759-773. https://doi.org/10.1007/BF00879599
Cited by
- Numerical Research on Energy Evolution and Burst Behavior of Unloading Coal–Rock Composite Structures pp.1573-1529, 2018, https://doi.org/10.1007/s10706-018-0609-5
- Theoretical and numerical analysis of stress and stress intensity factor in bi-material vol.10, pp.1, 2019, https://doi.org/10.1108/IJSI-08-2018-0048
- Intelligent Classification Method for Tunnel Lining Cracks Based on PFC-BP Neural Network vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8838216
- Development of Crack Width Prediction Models for RC Beam-Column Joint Subjected to Lateral Cyclic Loading Using Machine Learning vol.11, pp.16, 2021, https://doi.org/10.3390/app11167700