참고문헌
- Alexandridis, A., Chondrodima, E., Giannopoulos, N. and Sarimveis, H. (2016), A Fast and Efficient Method for Training Categorical Radial Basis Function Networks, IEEE Trans. Neural Networks Learn. Sys., In Press.
- Alexandridis, A., Stravrakas, I., Stergiopoulos, C., Hloupis, G., Ninos, K. and Triantis, D. (2015), "Non-destructive assessment of the three-point-bending strength of mortar beams using radial basis function neural networks", Comput. Concrete, 16(6), 919-932. https://doi.org/10.12989/cac.2015.16.6.919
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Expert Sys. Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156
- Bilgehan, M. and Turgut, P. (2010), "The use of artificial neural network in concrete compressive strength estimation", Comput. Concrete, 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271
- Breysse, D. (2012), "Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods", Constr. Build. Mater., 33, 139-163. https://doi.org/10.1016/j.conbuildmat.2011.12.103
- Daponte, P., Maceri, F. and Olivito, R.S. (1995), "Ultrasonic signal-processing techniques for the measurement of damage growth in structural materials", IEEE Trans. Instrument. Measure., 44(6), 1003-1008. https://doi.org/10.1109/19.475146
- Demir, A. (2015), "Prediction of hybrid fibre-added concrete strength using artifical neural networks", Comput. Concrete, 15(4), 503-514. https://doi.org/10.12989/cac.2015.15.4.503
- Grippo, L., Manno, A. and Sciandrone, M. (2016), Decomposition Techniques for Multilayer Perceptron Training, IEEE Trans. Neural Networks Learn. Sys., In Press.
- Hecht-Nielsen, R. (1998), "A theory of the cerebral cortex", ICONIP, 1459-1464.
- Hirose, S. and Achenbach, J.D. (1993), "Higher harmonics in the far field due to dynamic crack-face contacting", J. Acoust. Soc. Am., 93(1), 142-147. https://doi.org/10.1121/1.405651
- Johnson, P.A. (2006), Nonequilibrium Nonlinear-dynamics in Solids: State of the Art, Universality of Nonclassical Nonlinearity, 49-69, Springer, New York, U.S.A.
- Johnson, P. and Sutin, A. (2005), "Slow dynamics in diverse solids", J. Acoust. Soc. Am., 117(1), 24-130.
- Komlos, K., Popovics, S., Nurnbergerova, T., Babal, B. and Popovics, J.S. (1996), "Ultrasonic pulse velocity test of concrete properties as specified in various standards", Cement Concrete Compos., 18(5), 357-364. https://doi.org/10.1016/0958-9465(96)00026-1
- Korshak, B.A., Solodov, I.Y. and Ballad, E.M. (2002), "DC effects, sub-harmonics, stochasticity and "memory" for contact acoustic nonlinearity", Ultras., 40(1), 707-713. https://doi.org/10.1016/S0041-624X(02)00241-X
- Kumar, N. and Anamika, Y. (2016), "Solar resource estimation based on correlation matrix response for Indian geographical cities", J. Renew. Energy Res., 6(2), 695-701.
- Liang, M.T. and Wu, J. (2002), "Theoretical elucidation on the empirical formulae for the ultrasonic testing method for concrete structures", Cement Concrete Res., 32(11), 1763-1769. https://doi.org/10.1016/S0008-8846(02)00866-9
- Martin, O., Lopez, M. and Martin, F. (2007), "Artificial neural network for quality control by ultrasonic testing in resistance spot welding", J. Mater. Process. Technol., 183(2), 226-233. https://doi.org/10.1016/j.jmatprotec.2006.10.011
- Oh, P.E.T., Kee, S.H., Arndt, R.W., Popovics, J.S. and Zhu, J. (2013), "Comparison of NDT methods for assessment of a concrete bridge deck", J. Eng. Mech., 139(3), 305-314. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000441
- Ongpeng, J.M.C., Oreta, A.W.C. and Hirose, S. (2016a), "Effect of load pattern in the generation of higher harmonic amplitude in concrete using nonlinear ultrasonic test", J. Adv. Concrete Technol., 14(5), 205-214. https://doi.org/10.3151/jact.14.205
- Ongpeng, J.M.C., Oreta, A.W.C., Hirose, S. and Nakahata, K. (2016b), "Nonlinear ultrasonic investigation of concrete with varying aggregate size under uniaxial compression loading and unloading", J. Mater. Civil Eng., 04016210.
- Oreta, A. and Ongpeng, J. (2011), "Modeling the confined compressive strength of hybrid circular concrete columns using neural networks", Comput. Concrete, 8(5), 597-616. https://doi.org/10.12989/cac.2011.8.5.597
- Oreta, A.W.C. and Kawashima, K. (2003), "Neural network modeling of confined compressive strength and strain of circular concrete columns", J. Struct. Eng., 129(4), 554-561. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(554)
- Osman, N.Y., Ng, A.M. and McManus, K.J. (2006), "Selection of important input parameters using neural network trained with genetic algorithm for damage to light structures", Proceedings of the Fifth International Conference on Engineering Computational Technology: Las Palmas de Gran Canaria, Spain, September.
- Rossello, J.L., Canals, V., Oliver, A. and Morro, A. (2014), "Studying the role of synchronized and chaotic spiking neural ensembles in neural information processing", J. Neural Syst., 24(5), 1430003. https://doi.org/10.1142/S0129065714300034
- Shah, A.A. and Hirose, S. (2010a), "Nonlinear ultrasonic investigation of concrete damaged under uniaxial compression step loading", J. Mater. Civil Eng., 22(5), 476-484. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000050
- Shah, A.A, Alsayed, S., Abbas, H. and Al-Salloum, Y. (2012), "Predicting residual strength of non-linear ultrasonically evaluated damaged concrete using artificial neural network", Constr. Build. Mater., 20, 42-50.
- Shah, A.A. and Ribakov, Y. (2008), "Non-linear non-destructive evaluation of concrete", Constr. Build. Technol. J., 2, 111-115. https://doi.org/10.2174/1874836800802010111
- Shah, A.A. and Ribakov, Y. (2009), "Non-linear ultrasonic evaluation of damaged concrete based on higher order harmonic generation", Mater. Des., 30(10), 4095-4102. https://doi.org/10.1016/j.matdes.2009.05.009
- Shah, A.A. and Ribakov, Y. (2010b), "Effectiveness of nonlinear ultrasonic and acoustic emission evaluation of concrete with distributed damages", Mater. Des., 31(8), 3777-3784. https://doi.org/10.1016/j.matdes.2010.03.020
- Shah, A.A., Ribakov, Y. and Zhang, C. (2013), "Efficiency and sensitivity of linear and non-linear ultrasonics to identifying micro-and macro-scale defects in concrete", Mater. Des., 50, 905-916. https://doi.org/10.1016/j.matdes.2013.03.079
- Shah, A.A., Ribakov, Y. and Hirose, S. (2009), "Nondestructive evaluation of damaged concrete using non-linear ultrasonics", Mater. Des., 30(3), 775-782. https://doi.org/10.1016/j.matdes.2008.05.069
- Solodov, I.Y. and Chin, A.W. (1993), "Popping nonlinearity and chaos in vibrations of contact interface between solids", Acoust. Phys., 39(5), 476-479.
- Solodov, I.Y., Krohn, N. and Busse, G. (2002), "CAN: An example of nonclassical acoustic nonlinearity in solids", Ultras., 40(1), 621-625. https://doi.org/10.1016/S0041-624X(02)00186-5
- Solodov, I.Y. (1998), "Ultrasonics of nonlinear contacts: propagations, reflection and NDE-applications", Ultras., 36(1), 383-390. https://doi.org/10.1016/S0041-624X(97)00041-3
- Solodov, I.Y., Doring, D. and Busse, G. (2011), "New opportunities for NDT using non-linear interaction of elastic waves with defects", J. Mech. Eng., 57(3), 169-182.
- Ursino, M., Cuppini, C. and Magosso, E. (2015), "A neural network for learning the meaning of objects and words from a featural representation", Neur. Network., 63, 234-253. https://doi.org/10.1016/j.neunet.2014.11.009
- Van Den Abeele, K.E.A., Johnson, P.A. and Sutin, A. (2000), "Nonlinear elastic wave spectroscopy (NEWS) technique to discern material damage, Part I: Nonlinear wave modulation spectroscopy (NWMS)", Res. Nondestr. Eval., 12, 17-30. https://doi.org/10.1080/09349840009409646
- Yim, H.J., Kim, J.H., Park, S.J., Kwak, H.G. (2012), "Characterization of thermally damaged concrete using nonlinear ultrasonic method", Cement Concrete Res., 42(11), 1438-1446. https://doi.org/10.1016/j.cemconres.2012.08.006
- Zheng, Y., Maev, R.G. and Solodov, I.Y. (1999), "Nonlinear acoustic applications for material characterization: A review", Can. J. Phys., 77(12), 927-967. https://doi.org/10.1139/cjp-77-12-927
피인용 문헌
- Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials vol.17, pp.6, 2017, https://doi.org/10.3390/s17061344
- Monitoring Damage Using Acoustic Emission Source Location and Computational Geometry in Reinforced Concrete Beams vol.8, pp.2, 2018, https://doi.org/10.3390/app8020189
- Investigation on the Sensitivity of Ultrasonic Test Applied to Reinforced Concrete Beams Using Neural Network vol.8, pp.3, 2018, https://doi.org/10.3390/app8030405
- Contact and Noncontact Ultrasonic Nondestructive Test in Reinforced Concrete Beam vol.2018, pp.1687-8094, 2018, https://doi.org/10.1155/2018/5783175
- Guided wave analysis of air-coupled impact-echo in concrete slab vol.20, pp.3, 2017, https://doi.org/10.12989/cac.2017.20.3.257
- Ultrasonic velocity as a tool for mechanical and physical parameters prediction within carbonate rocks vol.13, pp.3, 2017, https://doi.org/10.12989/gae.2017.13.3.371
- Estimation of Wave Velocity for Ultrasonic Imaging of Concrete Structures Based on Dispersion Analysis vol.48, pp.2, 2017, https://doi.org/10.1520/jte20180343
- Knowledge-based learning for modeling concrete compressive strength using genetic programming vol.23, pp.4, 2017, https://doi.org/10.12989/cac.2019.23.4.255
- Evaluation of the Adhesion between Overlays and Substrates in Concrete Floors: Literature Survey, Recent Non-Destructive and Semi-Destructive Testing Methods, and Research Gaps vol.9, pp.9, 2019, https://doi.org/10.3390/buildings9090203
- Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars vol.24, pp.4, 2017, https://doi.org/10.12989/cac.2019.24.4.329
- Elastic modulus of ASR-affected concrete: An evaluation using Artificial Neural Network vol.24, pp.6, 2017, https://doi.org/10.12989/cac.2019.24.6.541
- Artificial neural network calculations for a receding contact problem vol.25, pp.6, 2017, https://doi.org/10.12989/cac.2020.25.6.551
- Assessing the load carrying capacity of concrete anchor bolts using non-destructive tests and artificial multilayer neural network vol.30, pp.None, 2020, https://doi.org/10.1016/j.jobe.2020.101260
- Investigation of the effects of corrosion on bond strength of steel in concrete using neural network vol.28, pp.1, 2021, https://doi.org/10.12989/cac.2021.28.1.077
- Using artificial neural network and non‐destructive test for crack detection in concrete surrounding the embedded steel reinforcement vol.22, pp.5, 2017, https://doi.org/10.1002/suco.202000767
- Correlation analysis and statistical assessment of early hydration characteristics and compressive strength for multi-composite cement paste vol.310, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2021.125260
- Development and testing of cellulose nanocrystal-based concrete vol.15, pp.None, 2017, https://doi.org/10.1016/j.cscm.2021.e00761