References
- Alghamri, R., Kanellopoulos, A. and Al-Tabbaa, A. (2016), "Impregnation and encapsulation of lightweight aggregates for self-healing concrete", Constr. Build. Mater., 124, 910-921. https://doi.org/10.1016/j.conbuildmat.2016.07.143
- Ali, F., Nadjai, A., Silcock, G. and Abu-Tair, A. (2004), "Outcomes of a major research on fire resistance of concrete columns", Fire Saf. J., 39(6), 433-445. https://doi.org/10.1016/j.firesaf.2004.02.004
- Annerel, E. and Taerwe, L. (2009), "Revealing the temperature history in concrete after fire exposure by microscopic analysis", Cement Concrete Res., 39(12), 1239-1249. https://doi.org/10.1016/j.cemconres.2009.08.017
- Arioz, O. (2007), "Effects of elevated temperatures on properties of concrete", Fire Saf. J., 42(8), 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003
- Carreira, D.J. and Chu, K. (1985), "Stress-strain relationship for plain concrete in compression", ACI J., 82(6), 797-804.
- Chandra, S., Berntsson, L. and Anderberg, Y. (1980), "Some effects of polymer addition on the fire resistance of concrete", Cement Concrete Res., 10(3), 367-375. https://doi.org/10.1016/0008-8846(80)90112-X
- Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C. (2006), "Residual stress-strain Relationship for concrete after exposure to high temperatures", Cement Concrete Res., 36(10), 1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029
- Choi, Y.W., Kim, Y.J., Shin, H.C. and Moon, H.Y. (2006), "An experimental research on the fluidity and mechanical properties of high-strength lightweight self-compacting concrete", Cement Concrete Res., 36(9), 1595-1602. https://doi.org/10.1016/j.cemconres.2004.11.003
- Cui, H.Z., Lo, T.Y., Memon, S.A., Xing, F. and Shi, X. (2012), "Experimental investigation and development of analytical model for pre-peak stress-strain curve of structural lightweight aggregate concrete", Constr. Build. Mater. 36, 845-859. https://doi.org/10.1016/j.conbuildmat.2012.06.041
- Eurocode2 (2003), Design of concrete structures Part 1&2, general rules, structural fire design, European Committee for Standardization, EN 1992-1-2, Brussels.
- Falade, F., Ikponmwosa, E. and Ojediran, N.I. (2010), "Behavior of lightweight concrete containing periwinkle shells at elevated temperature", J. Eng. Sci. Technol., 5(4), 379-390.
- Fathi, H. and Farhang, K. (2014), "Effect of cyclic loadings on heated self-compacting concrete", Constr. Build. Mater., 69, 26-31. https://doi.org/10.1016/j.conbuildmat.2014.07.040
- Georgali, B. and Tsakiridis, P.E. (2005), "Microstructure of firedamaged concrete", Cement Concrete Compos., 27(2), 255-263. https://doi.org/10.1016/j.cemconcomp.2004.02.022
- Hernandez, O.F. and Barluenga, G. (2004), "Fire performance of recycled rubber-filled high-strength concrete", Cement Concrete Res., 34(1), 109-117. https://doi.org/10.1016/S0008-8846(03)00253-9
- Hu, B.L., Song, Y.P. and Zhao, G. (1994), "Test on strength and deformation of concrete under complex stress at elevated temperature", Build. Sci. Res., 20(1), 47-50.
- Ismail, M., Ismail, S. and Muhammad B. (2011), "Influence of elevated temperatures on physical and compressive strength properties of concrete containing palm oil fuel ash", Constr. Build. Mater., 25(5), 2358-2364. https://doi.org/10.1016/j.conbuildmat.2010.11.034
- Janotka, I. and Nurnbergerova, T. (2005), "Effect of temperature on structural quality of the cement paste and high-strength concrete with silica fume", Nucl. Eng. Des., 235(17), 2019-2032. https://doi.org/10.1016/j.nucengdes.2005.05.011
- Jia, F. and Xiao, J.Z.H. (1996), "Strength inspection on heated concrete with impact device", Chin. Ind. Constr., 26(6), 51-55.
- Karamloo, M., Mazloom, M. and Payganeh, G. (2016), "Effects of maximum aggregate size on fracture behaviors of selfcompacting lightweight concrete", Constr. Build. Mater., 123, 508-515. https://doi.org/10.1016/j.conbuildmat.2016.07.061
- Khennane, A. and Baker, G. (1993), "Uniaxial model for concrete under variable temperature and stress", J. Eng. Mech., ASCE, 119(8), 1507-1525. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:8(1507)
- Kodur, V.K.R, Wang, T.C. and Cheng, F.P. (2004), "Predicting the fire resistance behavior of high strength concrete columns", Cement Concrete Compos., 26(2), 141-153. https://doi.org/10.1016/S0958-9465(03)00089-1
- Li, L. and Purkiss, L. (2005), "Stress-strain constitutive equations of concrete material at elevated temperatures", Fire Saf. J., 40(7), 669-686. https://doi.org/10.1016/j.firesaf.2005.06.003
- Lie, T.T. and Lin, T.D. (1985), "Fire performance of reinforced concrete columns", Fire Saf. Sci. Eng., 176-205.
- Lo, T.Y., Nadeem, A., Tang, W.C.P. and Yu, P.C. (2009), "The effect of high temperature curing on strength and carbonation of pozzolanic structural lightweight concretes", Constr. Build. Mater., 23(3), 1306-1310. https://doi.org/10.1016/j.conbuildmat.2008.07.026
- Mirza, F.A. and Soroushian, P. (2002), "Effects of alkali-resistant glass fiber reinforcement on crack and temperature resistance of lightweight concrete", Cement Concrete Compo., 24(2), 223-227. https://doi.org/10.1016/S0958-9465(01)00038-5
- Mydin, M.A. and Wang, Y.C. (2012), "Mechanical properties of foamed concrete exposed to high temperatures", Constr. Build. Mater., 26(1), 638-654. https://doi.org/10.1016/j.conbuildmat.2011.06.067
- Othumn, M.A. and Wang, Y.C. (2011), "Elevated-temperature thermal properties of light weight foamed concrete", Constr. Build. Mater., 25(2), 705-716. https://doi.org/10.1016/j.conbuildmat.2010.07.016
- Petkovski, M. (2010), "Effects of stress during heating on strength and stiffness of concrete at elevated temperature", Cement Concrete Res., 40(12), 1744-1755. https://doi.org/10.1016/j.cemconres.2010.08.016
- Poon, C.S., Shui, Z.H. and Lam, L. (2004), "Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures", Cement Concrete Res., 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
- Sanad, A.M., Lamont, S., Usmani, A.S. and Rotter, J.M. (2000), "Structural behavior in fire compartment under different heating regimes-Part 1 (slab thermal gradients)", Fire Saf. J., 35(2), 99-116. https://doi.org/10.1016/S0379-7112(00)00024-2
- Sancak, E., Sari, Y.D. and Simsek, O. (2008), "Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer", Cement Concrete Compo., 30(8), 715-721. https://doi.org/10.1016/j.cemconcomp.2008.01.004
- Schneider, U. (1986), "Modelling of concrete behavior at high temperatures", Proceedings of the International Conference of design of structures against fire, 53-69.
- Sengul, O., Azizi, S., Karaosmanoglu, F. and Tasdemir, M. (2011), "Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete", Energy Build., 43(2), 671-676. https://doi.org/10.1016/j.enbuild.2010.11.008
- Shafigh, P., Nomeli, M.A., Alengaram, U.J., Mahmud, H.B. and Jumaat, M.Z. (2016), "Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash", J. Clean. Produc., 135, 148-157. https://doi.org/10.1016/j.jclepro.2016.06.082
-
Sun, W., Luo, X. and Chan, Y.N. (2000), "Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to
$800^{\circ}C$ ", Cement Concrete Res., 30(2), 247-251. https://doi.org/10.1016/S0008-8846(99)00240-9 - Tanyildizi, H. and Cevilk, A. (2010), "Molding mechanical performance of lightweight concrete containing silica fume exposed to high temperature using genetic programming", Constr. Build. Mater., 24(12), 2612-2618. https://doi.org/10.1016/j.conbuildmat.2010.05.001
- Tanyildizi, H. and Coskun, A. (2008), "Performance of lightweight concrete with silica fume after high temperature", Constr. Build. Mater., 22(10), 2124-2129. https://doi.org/10.1016/j.conbuildmat.2007.07.017
- Tanyildizi, H. and Coskun, A. (2008), "The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash", Constr. Build. Mater., 22(11), 2169-2175.
- Terro, M.J. (1998), "Numerical modeling of the behavior of concrete structures in fire", ACI Struct. J., 95(2), 183-193.
- Xiao, J. and Konig, G. (2004), "Study on concrete at high temperature in China an overview", Fire Saf. J., 39(1), 89-103. https://doi.org/10.1016/S0379-7112(03)00093-6
- Youssef, M.A. and Moftah, M. (2006), "General Stress-strain relationship for concrete at elevated temperatures", J. Eng. Struct., 29(20), 2618-2634.
Cited by
- Plastic viscosity based mix design of self-compacting concrete with crushed rock fines vol.20, pp.4, 2017, https://doi.org/10.12989/cac.2017.20.4.461
- Mechanical and durability properties of self-compacting concrete with blended binders vol.22, pp.4, 2018, https://doi.org/10.12989/cac.2018.22.4.407
- A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity moduli vol.203, pp.None, 2018, https://doi.org/10.1016/j.jclepro.2018.08.254
- Understanding of Their Own Character Strengths by Late Adolescents and Adults With Autism Spectrum Disorder vol.57, pp.4, 2019, https://doi.org/10.6033/tokkyou.57.207
- Influence of plastic viscosity of mix on Self-Compacting Concrete with river and crushed sand vol.23, pp.1, 2019, https://doi.org/10.12989/cac.2019.23.1.037