DOI QR코드

DOI QR Code

DDX53 Promotes Cancer Stem Cell-Like Properties and Autophagy

  • Kim, Hyuna (Department of Biochemistry, Kangwon National University) ;
  • Kim, Youngmi (Department of Biochemistry, Kangwon National University) ;
  • Jeoung, Dooil (Department of Biochemistry, Kangwon National University)
  • Received : 2016.10.26
  • Accepted : 2016.12.19
  • Published : 2017.01.31

Abstract

Although cancer/testis antigen DDX53 confers anti-cancer drug-resistance, the effect of DDX53 on cancer stem cell-like properties and autophagy remains unknown. MDA-MB-231 ($CD133^+$) cells showed higher expression of DDX53, SOX-2, NANOG and MDR1 than MDA-MB-231 ($CD133^-$). DDX53 increased in vitro self-renewal activity of MCF-7 while decreasing expression of DDX53 by siRNA lowered in vitro self-renewal activity of MDA-MB-231. DDX53 showed an interaction with EGFR and binding to the promoter sequences of EGFR. DDX53 induced resistance to anti-cancer drugs in MCF-7 cells while decreased expression of DDX53 by siRNA increased the sensitivity of MDA-MB-231 to anti-cancer drugs. Negative regulators of DDX53, such as miR-200b and miR-217, increased the sensitivity of MDA-MB-231 to anti-cancer drugs. MDA-MB-231 showed higher expression of autophagy marker proteins such as ATG-5, $pBeclin1^{Ser15}$ and LC-3I/II compared with MCF-7. DDX53 regulated the expression of marker proteins of autophagy in MCF-7 and MDA-MB-231 cells. miR-200b and miR-217 negatively regulated the expression of autophagy marker proteins. Chromatin immunoprecipitation assays showed the direct regulation of ATG-5. The decreased expression of ATG-5 by siRNA increased the sensitivity to anti-cancer drugs in MDA-MB-231 cells. In conclusion, DDX53 promotes stem cell-like properties, autophagy, and confers resistance to anti-cancer drugs in breast cancer cells.

Keywords

References

  1. Ahmad, A., Maitah, M.Y., Ginnebaugh, K.R., Li, Y., Bao, B., Gadgeel, S.M., and Sarkar, F.H. (2013). Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. J. Hematol. Oncol. 6, 77. https://doi.org/10.1186/1756-8722-6-77
  2. Chen, H., Luo, Z., Dong, L., Tan, Y., Yang, J., Feng, G., Wu, M., Li, Z., and Wang, H. (2013). CD133/prominin-1-mediated autophagy and glucose uptake beneficial for hepatoma cell survival. PLoS One 8, e56878. https://doi.org/10.1371/journal.pone.0056878
  3. Chen, Y., Henson, E.S., Xiao, W., Huang, D., McMillan-Ward, E.M., Israels, S.J., and Gibson, S.B. (2016). Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia. Autophagy 12, 1029-1046. https://doi.org/10.1080/15548627.2016.1164357
  4. Chien, C.S., Wang, M.L., Chu, P.Y., Chang, Y.L., Liu, W.H., Yu, C.C., Lan, Y.T., Huang, P.I., Lee, Y.Y., Chen, Y.W., et al. (2015). Lin28B/Let-7 Regulates Expression of Oct4 and Sox2 and Reprograms Oral Squamous Cell Carcinoma Cells to a Stem-like State. Cancer Res. 75, 2553-2565. https://doi.org/10.1158/0008-5472.CAN-14-2215
  5. Cho, B., Lim, Y., Lee, D.Y., Park S,Y., Lee, H., Kim, W.H., Yang, H., Bang, Y.J., and Jeoung, D.I. (2002). Identification and characterization of a novel cancer/testis antigen gene CAGE. Biochem. Biophys. Res. Commun. 292, 715-726. https://doi.org/10.1006/bbrc.2002.6701
  6. Cho, Y.H., Han, K.M., Kim, D., Lee, J., Lee, S.H., Choi, K.W., Kim, J., and Han, Y.M. (2014). Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells 32, 424-435. https://doi.org/10.1002/stem.1589
  7. Chung, H.J., Choi, Y.E., Kim, E.S., Han, Y.H., Park, M.J., and Bae, I.H. (2015). miR-29b attenuates tumorigenicity and stemness maintenance in human glioblastoma multiforme by directly targeting BCL2L2. Oncotarget 6, 18429-18444. https://doi.org/10.18632/oncotarget.4384
  8. Dogan, I., Kawabata, S., Bergbower, E., Gills, J.J., Ekmekci, A., Wilson, W., Rudin, C.M., and Dennis, P.A. (2014). SOX2 expression is an early event in a murine model of EGFR mutant lung cancer and promotes proliferation of a subset of EGFR mutant lung adenocarcinoma cell lines. Lung Cancer 85, 1-6. https://doi.org/10.1016/j.lungcan.2014.03.021
  9. Du, J., Liu, S., He, J., Liu, X., Qu, Y., Yan, W., Fan, J., Li, R., Xi, H., Fu, W., et al. (2015). MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma. Oncotarget 6, 14993-15007. https://doi.org/10.18632/oncotarget.3802
  10. Goulielmaki, M., Koustas, E., Moysidou, E., Vlassi, M., Sasazuki, T., Shirasawa, S., Zografos, G., Oikonomou, E., and Pintzas, A. (2016). BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget 7, 9188-9221. https://doi.org/10.18632/oncotarget.6942
  11. He, C., Dong, X., Zhai, B., Jiang, X., Dong, D., Li, B., Jiang, H., Xu, S., and Sun, X. (2015). MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget 6, 28867-28881. https://doi.org/10.18632/oncotarget.4814
  12. Iwata, T., Fujita, T., Hirao, N., Matsuzaki, Y., Okada, T, Mochimaru, H., Susumu, N., Matsumoto, E., Sugano, K., Yamashita, N., et al. (2005). Frequent immune responses to a cancer/testis antigen, CAGE, in patients with microsatellite instability-positive endometrial cancer. Clin. Cancer Res. 11, 3949-3957. https://doi.org/10.1158/1078-0432.CCR-04-1702
  13. Jaganathan, S., Malek, E., Vallabhapurapu, S., Vallabhapurapu, S., and Driscoll, J.J. (2014). Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells. Oncotarget 5, 12358-12370. https://doi.org/10.18632/oncotarget.2590
  14. Jiang, J., Li, Z., Yu, C., Chen, M., Tian, S., and Sun, C. (2015). MiR-1181 inhibits stem cell-like phenotypes and suppresses SOX2 and STAT3 in human pancreatic cancer. Cancer Lett. 356, 962-970. https://doi.org/10.1016/j.canlet.2014.11.007
  15. Kim, Y., Park, H., Park, D., Lee, Y.S., Choe, J., Hahn, J.H., Lee, H., Kim, Y.M., and Jeoung, D. (2010). Cancer/testis antigen CAGE exerts negative regulation on p53 expression through HDAC2 and confers resistance to anti-cancer drugs. J. Biol. Chem. 285, 25957-25968. https://doi.org/10.1074/jbc.M109.095950
  16. Kim, Y., Park, D., Kim, H., Choi, M., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung, D. (2013). miR-200b and cancer/testis antigen CAGE form a feedback loop to regulate the invasion and tumorigenic and angiogenic responses of a cancer cell line to microtubule-targeting drugs. J. Biol. Chem. 288, 36502-36518. https://doi.org/10.1074/jbc.M113.502047
  17. Kim, Y., Kim, H., Park, H., Park, D., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung, D. (2014). miR-326-Histone Deacetylase-3 feedback loop regulates the invasion and tumorigenic and angiogenic response to anti-cancer drugs. J. Biol. Chem. 289, 28019-28039. https://doi.org/10.1074/jbc.M114.578229
  18. Kim, Y., Kim, H., Park, D., Han, M., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung D. (2016). miR-217 and CAGE form feedback loop and regulates the response to anti-cancer drugs through EGFR and HER2. Oncotarget 7, 10297-10321. https://doi.org/10.18632/oncotarget.7185
  19. Liggins, A.P., Lim, S.H., Soilleux, E.J., Pulford, K., and Banham, A.H. (2010). A panel of cancer-testis genes exhibiting broad-spectrum expression in haematological malignancies. Cancer Immun. 10, 8.
  20. Liu, K., Lin, B., Zhao, M., Yang, X., Chen, M., Gao, A., Liu, F., Que, J., and Lan, X. (2013). The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal. 25, 1264-1271. https://doi.org/10.1016/j.cellsig.2013.02.013
  21. Lopez-Bertoni, H., Lal, B., Li, A., Caplan, M., Guerrero-Cazares, H., Eberhart, C.G., Quinones-Hinojosa, A., Glas, M., Scheffler, B., Laterra, J., et al. (2015). DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene 34, 3994-4004. https://doi.org/10.1038/onc.2014.334
  22. Lu, Y.X., Yuan, L., Xue, X.L., Zhou, M., Liu, Y., Zhang, C., Li, J.P., Zheng, L., Hong, M., and Li, X.N. (2014). Regulation of colorectal carcinoma stemness, growth, and metastasis by an miR-200c-Sox2-negative feedback loop mechanism. Clin. Cancer Res. 20, 2631-2642. https://doi.org/10.1158/1078-0432.CCR-13-2348
  23. Luo, W., Li, S., Peng, B., Ye, Y., Deng, X., and Yao, K. (2013). Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS One 8, e56324. https://doi.org/10.1371/journal.pone.0056324
  24. Ma, K., Pan, X., Fan, P., He, Y., Gu, J., Wang, W., Zhang, T., Li, Z., and Luo, X. (2014). Loss of miR-638 in vitro promotes cell invasion and a mesenchymal-like transition by influencing SOX2 expression in colorectal carcinoma cells. Mol. Cancer 13, 118. https://doi.org/10.1186/1476-4598-13-118
  25. Ojha, R., Jha, V., Singh, S.K., and Bhattacharyya, S. (2014). Autophagy inhibition suppresses the tumorigenic potential of cancer stem cell enriched side population in bladder cancer. Biochim. Biophys. Acta. 1842, 2073-2086. https://doi.org/10.1016/j.bbadis.2014.07.007
  26. Ojha, R., Singh, S.K., and Bhattacharyya, S. (2016). JAK-mediated autophagy regulates stemness and cell survival in cisplatin resistant bladder cancer cells. Biochim. Biophys. Acta 1860, 2484-2497. https://doi.org/10.1016/j.bbagen.2016.07.021
  27. Ozen, M., Karatas, O.F., Gulluoglu, S., Bayrak, O.F., Sevli, S., Guzel, E., Ekici, I.D., Caskurlu, T., Solak, M., Creighton, C.J., et al. (2015). Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression. Cancer Invest. 33, 251-258. https://doi.org/10.3109/07357907.2015.1025407
  28. Pan, B., Feng, B., Chen, Y., Huang, G., Wang, R., Chen, L., and Song, H. (2015). MiR-200b regulates autophagy associated with chemoresistance in human lung adenocarcinoma. Oncotarget 6, 32805-32820. https://doi.org/10.18632/oncotarget.5352
  29. Park, S., Han, S., Choi, I., Kim, B., Park, S.P., Joe, E.H., and Suh, Y.H. (2016). Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy. PLoS One 11, e0163029. https://doi.org/10.1371/journal.pone.0163029
  30. Por, E., Byun, H.J., Lee, E.J., Lim, J.H., Jung, S.Y., Park, I., Kim, Y.M., Jeoung, D.I., and Lee, H. (2010). The cancer/testis antigen CAGE with oncogenic potential stimulates cell proliferation by up-regulating cyclins D1 and E in an AP-1- and E2F-dependent manner. J. Biol. Chem. 285, 14475-14485. https://doi.org/10.1074/jbc.M109.084400
  31. Rybak, A.P., and Tang, D. (2013). SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells. Cell Signal 25, 2734-2742. https://doi.org/10.1016/j.cellsig.2013.08.041
  32. Shankar, S., Nall, D., Tang, S.N., Meeker, D., Passarini, J., Sharma, J., and Srivastava, R.K. (2011). Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 6, e16530. https://doi.org/10.1371/journal.pone.0016530
  33. Song, Y.J., Zhang, S.S., Guo, X.L., Sun, K., Han, Z.P., Li, R., Zhao, Q.D., Deng, W.J., Xie, X.Q., Zhang, J.W., et al. (2013). Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett. 339, 70-81. https://doi.org/10.1016/j.canlet.2013.07.021
  34. Su, Y.C., Davuluri, G.V., Chen, C.H., Shiau, D.C., Chen, C.C., Chen, C.L., Lin, Y.S., and Chang, C.P. (2016). Galectin-1-Induced Autophagy Facilitates Cisplatin Resistance of Hepatocellular Carcinoma. PLoS One 11, e0148408. https://doi.org/10.1371/journal.pone.0148408
  35. Tang, M.C., Wu, M.Y., Hwang, M.H., Chang, Y.T., Huang, H.J., Lin, A.M., and Yang, J.C. (2015). Chloroquine enhances gefitinib cytotoxicity in gefitinib-resistant nonsmall cell lung cancer cells. PLoS One 10, e0119135. https://doi.org/10.1371/journal.pone.0119135
  36. Tellez, C.S., Juri, D.E., Do, K., Bernauer, A.M., Thomas, C.L., Damiani, L.A., Tessema, M., Leng, S., and Belinsky, S.A. (2011). EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res. 71, 3087-3097. https://doi.org/10.1158/0008-5472.CAN-10-3035
  37. Valverde, A., Penarando, J., Canas, A., Lopez-Sanchez, L.M., Conde, F., Hernandez, V., Peralbo, E., Lopez-Pedrera, C., de la Haba-Rodriguez, J., Aranda, E., et al. (2015). Simultaneous inhibition of EGFR/VEGFR and cyclooxygenase-2 targets stemness-related pathways in colorectal cancer cells. PLoS One 10, e0131363 https://doi.org/10.1371/journal.pone.0131363
  38. Wei, M.F., Chen, M.W., Chen, K.C., Lou, P.J., Lin, S.Y., Hung, S.C., Hsiao, M., Yao, C.J., and Shieh, M.J. (2014). Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy 10, 1179-1192. https://doi.org/10.4161/auto.28679
  39. Xiong, B., Ma, L., Hu, X., Zhang, C., and Cheng, Y. (2104). Characterization of side population cells isolated from the colon cancer cell line SW480. Int. J. Oncol. 45, 1175-1183. https://doi.org/10.3892/ijo.2014.2498
  40. Xu, S.W., Law, B.Y., Mok, S.W., Leung, E.L., Fan, X.X., Coghi, P.S., Zeng, W., Leung, C.H., Ma, D.L., Liu, L., et al. (2016). Autophagic degradation of epidermal growth factor receptor in gefitinib-resistant lung cancer by celastrol. Int. J. Oncol. 49, 1576-1588. https://doi.org/10.3892/ijo.2016.3644
  41. Yang, J., Liao, D., Chen, C., Liu, Y., Chuang, T.H., Xiang, R., Markowitz, D., Reisfeld, R.A., and Luo, Y. (2013). Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells 31, 248-258. https://doi.org/10.1002/stem.1281
  42. Yang, M.C., Wang, H.C., Hou, Y.C., Tung, H.L., Chiu, T.J., and Shan, Y.S. (2015) Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol. Cancer 14, 179. https://doi.org/10.1186/s12943-015-0449-3
  43. Yang, P., Huo, Z., Liao, H., and Zhou, Q. (2015) Cancer/testis antigens trigger epithelial-mesenchymal transition and genesis of cancer stem-like cells. Curr. Pharm. Des. 21, 1292-1300. https://doi.org/10.2174/1381612821666141211154707
  44. Yin, B., Zeng, Y., Liu, G., Wang, X., Wang, P., and Song, Y. (2014) MAGE-A3 is highly expressed in a cancer stem cell-like side population of bladder cancer cells. Int. J. Clin. Exp. Pathol. 7, 2934-2941.
  45. Zhen, Q., Liu, J., Gao, L., Liu, J., Wang, R., Chu, W., Zhang, Y., Tan, G., Zhao, X., and Lv, B. (2015) MicroRNA-200a targets EGFR and c-Met to inhibit migration, invasion, and gefitinib resistance in non-small cell lung cancer. Cytogenet. Genome Res. 146, 1-8. https://doi.org/10.1159/000434741

Cited by

  1. Autophagy maintains the stemness of ovarian cancer stem cells by FOXA2. vol.36, pp.1, 2017, https://doi.org/10.1186/s13046-017-0644-8
  2. CLDN1 Increases Drug Resistance of Non-Small Cell Lung Cancer by Activating Autophagy via Up-Regulation of ULK1 Phosphorylation vol.23, pp.None, 2017, https://doi.org/10.12659/msm.904177
  3. CAGE Binds to Beclin1, Regulates Autophagic Flux and CAGE-Derived Peptide Confers Sensitivity to Anti-cancer Drugs in Non-small Cell Lung Cancer Cells vol.8, pp.None, 2017, https://doi.org/10.3389/fonc.2018.00599
  4. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-019-45636-8
  5. Targeting Autophagy for Overcoming Resistance to Anti-EGFR Treatments vol.11, pp.9, 2019, https://doi.org/10.3390/cancers11091374
  6. Emerging relationship between RNA helicases and autophagy vol.21, pp.10, 2017, https://doi.org/10.1631/jzus.b2000245
  7. The CAGE-MiR-181b-5p-S1PR1 Axis Regulates Anticancer Drug Resistance and Autophagy in Gastric Cancer Cells vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.666387
  8. A Small Molecule Strategy for Targeting Cancer Stem Cells in Hypoxic Microenvironments and Preventing Tumorigenesis vol.143, pp.35, 2017, https://doi.org/10.1021/jacs.1c03875
  9. Nuclear factor I-C disrupts cellular homeostasis between autophagy and apoptosis via miR-200b-Ambra1 in neural tube defects vol.13, pp.1, 2017, https://doi.org/10.1038/s41419-021-04473-2