References
- Abe, N., and Cavalli, V. (2008). Nerve injury signaling. Curr. Opin. Neurobiol. 18, 276-283. https://doi.org/10.1016/j.conb.2008.06.005
- Abe, N., Borson, S.H., Gambello, M.J., Wang, F., and Cavalli, V. (2010). Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J. Biol. Chem. 285, 28034-28043. https://doi.org/10.1074/jbc.M110.125336
- Bareyre, F.M., Garzorz, N., Lang, C., Misgeld, T., Büning, H., and Kerschensteiner, M. (2011). In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc. Natl. Acad. Sci. USA 108, 6282-6287. https://doi.org/10.1073/pnas.1015239108
-
Ben-Tov Perry, R., Doron-Mandel, E., Iavnilovitch, E., Rishal, I., Dagan, S.Y., Tsoory, M., Coppola, G., McDonald, M.K., Gomes, C., Geschwind, D.H., et al. (2012). Subcellular knockout of importin
${\beta}1$ perturbs axonal retrograde signaling. Neuron 75, 294-305. https://doi.org/10.1016/j.neuron.2012.05.033 - Bode, A.G., and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer. 4, 793-805 https://doi.org/10.1038/nrc1455
- Bomze, H.M., Bulsara, K.R., Iskandar, B.J., Caroni, P., and Skene, J.H. (2001). Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat. Neurosci. 4, 38-43. https://doi.org/10.1038/82881
- Bradke, F., Fawcett, J.W., and Spira, M.E. (2012). Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat. Rev. Neurosci. 13, 183-193. https://doi.org/10.1038/nrn3176
- Cai, D., Qiu, J., Cao, Z., McAtee, M., Bregman, B.S., and Filbin, M.T. (2001). Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J. Neurosci. 21, 4731-4739. https://doi.org/10.1523/JNEUROSCI.21-13-04731.2001
- Chandran, V., Coppola, G., Nawabi, H., Omura, T., Versano, R., Huebner, E. a, Zhang, A., Costigan, M., Yekkirala, A., Barrett, L., et al. (2016). A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron 89, 956-970. https://doi.org/10.1016/j.neuron.2016.01.034
- Chen, M.S., Huber, A.B., van der Haar, M.E., Frank, M., Schnell, L., Spillmann, A.A., Christ, F., and Schwab, M.E. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434-439. https://doi.org/10.1038/35000219
- Chen, Z.-L., Yu, W.-M., and Strickland, S. (2007). Peripheral regeneration. Annu. Rev. Neurosci. 30, 209-233. https://doi.org/10.1146/annurev.neuro.30.051606.094337
- Cho, Y., and Cavalli, V. (2014). HDAC signaling in neuronal development and axon regeneration. Curr. Opin. Neurobiol. 27, 118-126.
- Cho, Y., Sloutsky, R., Naegle, K.M., and Cavalli, V. (2013). Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155, 894-908. https://doi.org/10.1016/j.cell.2013.10.004
-
Cho, Y., Shin, J.E., Ewan, E.E., Oh, Y.M., Pita-Thomas, W., and Cavalli, V. (2015). Activating injury-responsive genes with hypoxia enhances axon regeneration through neuronal HIF-
$1{\alpha}$ . Neuron 88, 720-734. https://doi.org/10.1016/j.neuron.2015.09.050 - Coleman, M. (2005). Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 6, 889-898. https://doi.org/10.1038/nrn1788
- Coleman, M.P., and Freeman, M.R. (2010). Wallerian degeneration, wld(s), and nmnat. Annu. Rev. Neurosci. 33, 245-267. https://doi.org/10.1146/annurev-neuro-060909-153248
- Erturk, A., Hellal, F., Enes, J., and Bradke, F. (2007). Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J. Neurosci. 27, 9169-9180. https://doi.org/10.1523/JNEUROSCI.0612-07.2007
- Finelli, M.J., Wong, J.K., and Zou, H. (2013). Epigenetic regulation of sensory axon regeneration after spinal cord injury. J. Neurosci. 33, 19664-19676. https://doi.org/10.1523/JNEUROSCI.0589-13.2013
- Gao, Y., Deng, K., Hou, J., Bryson, J.B., Barco, A., Nikulina, E., Spencer, T., Mellado, W., Kandel, E.R., and Filbin, M.T. (2004). Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44, 609-621. https://doi.org/10.1016/j.neuron.2004.10.030
- Gaub, P., Tedeschi, a, Puttagunta, R., Nguyen, T., Schmandke, a, and Di Giovanni, S. (2010). HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ. 17, 1392-1408. https://doi.org/10.1038/cdd.2009.216
- Gaub, P., Joshi, Y., Wuttke, A., Naumann, U., Schnichels, S., Heiduschka, P., and Di Giovanni, S. (2011). The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 134, 2134-2148. https://doi.org/10.1093/brain/awr142
- Geoffroy, C.G., Meves, J.M., and Zheng, B. (2016). The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms. Neurosci. Lett. doi.org/10.1016/j.neulet.2016.11.003
- Di Giovanni, S., Knights, C.D., Rao, M., Yakovlev, A., Beers, J., Catania, J., Avantaggiati, M.L., and Faden, A.I. (2006). The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J. 25, 4084-4096. https://doi.org/10.1038/sj.emboj.7601292
- Gong, L., Wu, J., Zhou, S., Wang, Y., Qin, J., Yu, B., Gu, X., and Yao, C. (2016). Global analysis of transcriptome in dorsal root ganglia following peripheral nerve injury in rats. Biochem. Biophys. Res. Commun. 478, 206-212. https://doi.org/10.1016/j.bbrc.2016.07.067
- Gordon, T., Tyreman, N., and Raji, M.A. (2011). The basis for diminished functional recovery after delayed peripheral nerve repair. J. Neurosci. 31, 5325-5334. https://doi.org/10.1523/JNEUROSCI.6156-10.2011
- Jones, P.A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484-492. https://doi.org/10.1038/nrg3230
- Kenney, a M., and Kocsis, J.D. (1998). Peripheral axotomy induces long-term c-Jun amino-terminal kinase-1 activation and activator protein-1 binding activity by c-Jun and junD in adult rat dorsal root ganglia In vivo. J. Neurosci. 18, 1318-1328. https://doi.org/10.1523/JNEUROSCI.18-04-01318.1998
- Kobayashi, J., Mackinnon, S.E., Watanabe, O., Ball, D.J., Gu, X.M., Hunter, D.A., and Kuzon, Jr, W.M. (1997). The effect of duration of muscle denervation on functional recovery. Muscle Nerve 20, 858-866. https://doi.org/10.1002/(SICI)1097-4598(199707)20:7<858::AID-MUS10>3.0.CO;2-O
- Lee, K.K., and Workman, J.L. (2007). Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol. 8, 284-295. https://doi.org/10.1038/nrm2145
- Li, S., Xue, C., Yuan, Y., Zhang, R., Wang, Y., Wang, Y., Yu, B., Liu, J., Ding, F., Yang, Y., et al. (2015). The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Sci. Rep. 5, 16888. https://doi.org/10.1038/srep16888
- Lindner, R., Puttagunta, R., Nguyen, T., and Di Giovanni, S. (2014). DNA methylation temporal profiling following peripheral versus central nervous system axotomy. Sci. Data 1, 140038. https://doi.org/10.1038/sdata.2014.38
- Liu, K., Tedeschi, A., Park, K.K., and He, Z. (2011). Neuronal intrinsic mechanisms of axon regeneration. Annu. Rev. Neurosci. 34, 131-152. https://doi.org/10.1146/annurev-neuro-061010-113723
- Ma, T.C., and Willis, D.E. (2015). What makes a RAG regeneration associated? Front. Mol. Neurosci. 8, 43.
- Magill, C.K., Tong, A., Kawamura, D., Hayashi, A., Hunter, D. a, Parsadanian, A., Mackinnon, S.E., and Myckatyn, T.M. (2007). Reinnervation of the tibialis anterior following sciatic nerve crush injury: a confocal microscopic study in transgenic mice. Exp. Neurol. 207, 64-74. https://doi.org/10.1016/j.expneurol.2007.05.028
- McKeon, R.J., Schreiber, R.C., Rudge, J.S., and Silver, J. (1991). Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with. J. Neurosci. 11, 3398-3411. https://doi.org/10.1523/JNEUROSCI.11-11-03398.1991
- Michaelevski, I., Segal-Ruder, Y., Rozenbaum, M., Medzihradszky, K.F., Shalem, O., Coppola, G., Horn-Saban, S., Ben-Yaakov, K., Dagan, S.Y., Rishal, I., et al. (2010). Signaling to transcription networks in the neuronal retrograde injury response. Sci. Signal. 3, ra53.
- Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R., and Filbin, M.T. (1994). A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757-767. https://doi.org/10.1016/0896-6273(94)90042-6
- Neumann, S., and Woolf, C.J. (1999). Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83-91. https://doi.org/10.1016/S0896-6273(00)80755-2
- Neumann, S., Bradke, F., Tessier-Lavigne, M., and Basbaum, A.I. (2002). Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885-893. https://doi.org/10.1016/S0896-6273(02)00702-X
- Pan, Y.A., Misgeld, T., Lichtman, J.W., and Sanes, J.R. (2003). Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J. Neurosci. 23, 11479-11488. https://doi.org/10.1523/JNEUROSCI.23-36-11479.2003
- Park, K.K., Liu, K., Hu, Y., Smith, P.D., Wang, C., Cai, B., Xu, B., Connolly, L., Kramvis, I., Sahin, M., et al. (2008). Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963-966. https://doi.org/10.1126/science.1161566
- Puttagunta, R., Tedeschi, A., Soria, M.G., Hervera, A., Lindner, R., Rathore, K.I., Gaub, P., Joshi, Y., Nguyen, T., Schmandke, A., et al. (2014). PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat. Commun. 5, 3527. https://doi.org/10.1038/ncomms4527
- Qiu, J., Cai, D., Dai, H., Mcatee, M., Hoffman, P.N., Bregman, B.S., and Filbin, M.T. (2002). Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895-903. https://doi.org/10.1016/S0896-6273(02)00730-4
- Raivich, G., Bohatschek, M., Da Costa, C., Iwata, O., Galiano, M., Hristova, M., Nateri, A.S., Makwana, M., Riera-Sans, L., Wolfer, D.P., et al. (2004). The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron 43, 57-67. https://doi.org/10.1016/j.neuron.2004.06.005
- Rishal, I., and Fainzilber, M. (2014). Axon-soma communication in neuronal injury. Nat. Rev. Neurosci. 15, 32-42. https://doi.org/10.1038/nrn3609
- Rivieccio, M.A., Brochier, C., Willis, D.E., Walker, B.A., D'Annibale, M.A., McLaughlin, K., Siddiq, A., Kozikowski, A.P., Jaffrey, S.R., Twiss, J.L., et al. (2009). HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc. Natl. Acad. Sci. USA 106, 19599-19604. https://doi.org/10.1073/pnas.0907935106
- Shin, J.E., Cho, Y., Beirowski, B., Milbrandt, J., Cavalli, V., and DiAntonio, A. (2012). Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 74, 1015-1022. https://doi.org/10.1016/j.neuron.2012.04.028
- Smith, D.S., and Skene, J.H. (1997). A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J. Neurosci. 17, 646-658. https://doi.org/10.1523/JNEUROSCI.17-02-00646.1997
- Smith, P.D., Sun, F., Park, K.K., Cai, B., Wang, C., Kuwako, K., Martinez-Carrasco, I., Connolly, L., and He, Z. (2009). SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64, 617-623. https://doi.org/10.1016/j.neuron.2009.11.021
- Stoll, G., Jander, S., and Myers, R.R. (2002). Degeneration and regeneration of the peripheral nervous system: from Augustus Waller's observations to neuroinflammation. J. Peripher. Nerv. Syst. JPNS 7, 13-27. https://doi.org/10.1046/j.1529-8027.2002.02002.x
- Tedeschi, A., Nguyen, T., Puttagunta, R., Gaub, P., and Di Giovanni, S. (2009). A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ. 16, 543-554. https://doi.org/10.1038/cdd.2008.175
- Tetzlaff, W., Alexander, S.W., Miller, F.D., and Bisby, M.A. (1991). Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J. Neurosci. 11, 2528-2544. https://doi.org/10.1523/JNEUROSCI.11-08-02528.1991
- De Vos, K.J., Grierson, A.J., Ackerley, S., and Miller, C.C.J. (2008). Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151-173. https://doi.org/10.1146/annurev.neuro.31.061307.090711
- Wang, K.C. (2002). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. 417, 941-944. https://doi.org/10.1038/nature00867
- Wang, Q.J. (2006). PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol. Sci. 27, 317-323. https://doi.org/10.1016/j.tips.2006.04.003
- Wang, M.S., Davis, A. a, Culver, D.G., and Glass, J.D. (2002). WldS mice are resistant to paclitaxel (taxol) neuropathy. Ann. Neurol. 52, 442-447. https://doi.org/10.1002/ana.10300
- Yiu, G., and He, Z. (2006). Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci. 7, 617-627. https://doi.org/10.1038/nrn1956
Cited by
- Deep Sequencing Reveals the Significant Involvement of cAMP-Related Signaling Pathways Following Sciatic Nerve Crush vol.42, pp.12, 2017, https://doi.org/10.1007/s11064-017-2409-3
- in mouse sciatic nerve model vol.34, pp.4, 2017, https://doi.org/10.1080/08990220.2017.1421160
- HSP90 is a chaperone for DLK and is required for axon injury signaling vol.115, pp.42, 2018, https://doi.org/10.1073/pnas.1805351115
- A Conditioning Sciatic Nerve Lesion Triggers a Pro-regenerative State in Primary Sensory Neurons Also of Dorsal Root Ganglia Non-associated With the Damaged Nerve vol.13, pp.1662-5102, 2019, https://doi.org/10.3389/fncel.2019.00011
- Immunohistochemical analysis of histone H3 acetylation in the trigeminal root entry zone in an animal model of trigeminal neuralgia vol.131, pp.3, 2017, https://doi.org/10.3171/2018.5.jns172948
- Immunohistochemical analysis of histone H3 acetylation in the trigeminal root entry zone in an animal model of trigeminal neuralgia vol.131, pp.3, 2017, https://doi.org/10.3171/2018.5.jns172948
- The stem cell marker Prom1 promotes axon regeneration by down-regulating cholesterol synthesis via Smad signaling vol.117, pp.27, 2020, https://doi.org/10.1073/pnas.1920829117
- Signals Orchestrating Peripheral Nerve Repair vol.9, pp.8, 2017, https://doi.org/10.3390/cells9081768
- Teaching Epigenetic Regulation of Gene Expression Is Critical in 21st-Century Science Education: Key Concepts & Teaching Strategies vol.82, pp.6, 2017, https://doi.org/10.1525/abt.2020.82.6.372
- Regulation of Social Stress and Neural Degeneration by Activity-Regulated Genes and Epigenetic Mechanisms in Dopaminergic Neurons vol.57, pp.11, 2017, https://doi.org/10.1007/s12035-020-02037-7
- MicroRNA-135a-5p Promotes the Functional Recovery of Spinal Cord Injury by Targeting SP1 and ROCK vol.22, pp.None, 2017, https://doi.org/10.1016/j.omtn.2020.08.035
- Interaction between Schwann cells and other cells during repair of peripheral nerve injury vol.16, pp.1, 2017, https://doi.org/10.4103/1673-5374.286956
- Cyclic Stretch of Either PNS or CNS Located Nerves Can Stimulate Neurite Outgrowth vol.10, pp.1, 2021, https://doi.org/10.3390/cells10010032
- Experimental Model Systems for Understanding Human Axonal Injury Responses vol.22, pp.2, 2017, https://doi.org/10.3390/ijms22020474
- The intrinsic axon regenerative properties of mature neurons after injury vol.53, pp.1, 2017, https://doi.org/10.1093/abbs/gmaa148
- Potential roles of stem cell marker genes in axon regeneration vol.53, pp.1, 2017, https://doi.org/10.1038/s12276-020-00553-z
- In Vivo Gene Delivery of STC2 Promotes Axon Regeneration in Sciatic Nerves vol.58, pp.2, 2017, https://doi.org/10.1007/s12035-020-02155-2
- Comparative gene expression profiling reveals the mechanisms of axon regeneration vol.288, pp.16, 2021, https://doi.org/10.1111/febs.15646
- Traditional application and modern pharmacological research of Eucommia ulmoides Oliv. vol.16, pp.1, 2017, https://doi.org/10.1186/s13020-021-00482-7