DOI QR코드

DOI QR Code

Effect of Ground-fogging on Target and Non-target Insects in Korean Pine Forests

지상 연막 방제가 잣나무림 내 표적 및 비표적 곤충에 미치는 영향

  • Jang, Tae Woon (Department of Forest Environment Protection, Kangwon National University) ;
  • Jung, Jong-Kook (Division of Insect Pests and Disease, National Institute of Forest Science) ;
  • Kim, Mannyeon (Department of Forest Environment Protection, Kangwon National University) ;
  • Kim, Jongkuk (Department of Forest Environment Protection, Kangwon National University) ;
  • Jung, Chansik (Division of Insect Pests and Disease, National Institute of Forest Science) ;
  • Koh, Sanghyun (Division of Insect Pests and Disease, National Institute of Forest Science)
  • 장태웅 (강원대학교 산림환경보호학전공) ;
  • 정종국 (국립산림과학원 산림병해충연구과) ;
  • 김만년 (강원대학교 산림환경보호학전공) ;
  • 김종국 (강원대학교 산림환경보호학전공) ;
  • 정찬식 (국립산림과학원 산림병해충연구과) ;
  • 고상현 (국립산림과학원 산림병해충연구과)
  • Received : 2017.07.13
  • Accepted : 2017.10.17
  • Published : 2017.12.31

Abstract

This study was conducted to assess effect of thiacloprid fogging on non-target insect communities in Korean white pine forests. In addition, we assessed effect of thiacloprid fogging on mortality of Monochamus saltuarius as a vector of pine wood nematodes, and Apis mellifera as a non-target species. We compared abundance, species richness, and compostion of insects, and mortality of two insects among four treatment groups (control and thiacloprid-fogged groups with 3 different doses) located in the Kangwon National University Forest. For sampling of insects, 6 pitfall and 2 multi-funnel traps and 3 waterproof cloth sheets were placed in each study plot. In addition, M. saltuarius and A. mellifera were put into each meshed cage which installed at 7 m and 15 m heights in center of each study plot. Thiacloprid was fogged only once (middle May) in each plot using a fogging machine. Overall, thiacloprid fogging was appeared to be low toxicity to the abundance, species richness, and compostion of insects and mortality of A. mellifera, while it seems effectively impact on the mortality of M. saltuarius. However, thiacloprid fogging seems more influenced by microclimates in forests because the mortality of M. saltuarius in mesh cages was different according to heights and spatial locations. To control the population density and dispersal of M. saltuarius using by fogging techniques, therefore, it may be necessary to minimize the uncertainty about the effectiveness of thiacloprid fogging by improving the fogging techniques.

본 연구는 소나무재선충병의 확산 저지를 위해서 티아클로프리드 약제를 지상연막방제로 살포하였을 때 잣나무림 내 비표적 곤충 군집에 미치는 영향을 평가하기 위해 수행되었다. 또한 티아클로프리드의 살충 효과를 확인하기 위해서 표적 곤충인 북방수염하늘소와 대표적인 방화 곤충인 꿀벌에 대한 영향을 조사하였다. 2016년 강원대학교 학술림 내 잣나무림에서 처리구간(대조구와 약량별 처리구) 곤충류의 개체수, 종수, 종 구성의 유사도 그리고 곤충 2종의 치사율을 비교하였다. 각 조사구에는 곤충류 조사를 위해 6개의 함정트랩과 2개의 다중깔때기트랩을 설치하였고, 연무연막 살포 후 치사된 곤충류 조사를 위해 3장의 방수포를 배치하였다. 또한 북방수염하늘소와 꿀벌을 망실에 넣어 조사구 중심부에 위치한 잣나무의 7 m와 15 m 높이에 걸어 두었다. 조사 결과, 티아클로프리드를 1회 살포한 본 연구의 경우에는 곤충 군집이나 비표적 곤충인 꿀벌에 대한 영향은 미미한 것으로 확인되었다. 반면에 표적 곤충인 북방수염하늘소의 경우에는 티아클로프리드에 의한 치사 효과가 확인되었다. 망실 내 북방수염하늘소의 치사율은 망실의 높이와 공간적인 위치에 따라 달랐는데, 이는 티아클로프리드의 연무연막이 임내의 미기상 영향을 많이 받기 때문인 것으로 판단된다. 따라서 연무연막기를 이용하여 잣나무림 내 북방수염하늘소의 밀도와 확산을 억제하기 위해서는 연막기술을 개선함으로써 살충 효과에 대한 불확실성을 최소화시킬 필요가 있을 것이다.

Keywords

References

  1. Bates D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B., Singmann, H., Dai, B., Grothendieck, G. and Green, P. 2016. Linear mixed-effects models using 'Eigen' and S4, version 1.1-12.
  2. Beketov, M.A. and Liess, M. 2008. Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environmental Toxicology and Chemistry 27(2): 461-470. https://doi.org/10.1897/07-322R.1
  3. Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. and White, J.S.S. 2008. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecology and Evolution 24(3): 127-135. https://doi.org/10.1016/j.tree.2008.10.008
  4. Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., Graves, S., Heiberger, R., Laboissiere, R., Monette, G., Murdoch, D., Nilsson, H., Ogle, D., Ripley, B., Venables, W., Winsemius, D., Zeileis, A., R-Core. 2016. Companion to applied regression, version 2.1-4.
  5. Graves, S., Piepho, H.P. and Selzer, L. 2015. Visualizations of paired comparisons, version 0.1-7.
  6. Jeschke, P., Moriya, K., Lantzsch, R., Seifert, H., Lindner, W., Jelich, K., Gohrt, A., Beck, M.E. and Etzel, W. 2001. Thiacloprid (Bay YRC 2894) - A new member of the chloronicotinyl insecticide (CNI) family. Pflanzenschutz Nachrichten Bayer 54(2): 147-160.
  7. KFRI. 2006. A technical manual for forest insect pests and diseases. Korea Forest Research Institute. p 300. ISBN 89-8176-345-3. (in Korean)
  8. Korea Crop Protection Association. 2016. Guideline for the use of thiacloprid. http://koreacpa.org/. Assessed by April 15, 2016.
  9. Krohn, J. 2001. Behaviour of thiacloprid in the environment. Pflanzenschutz Nachrichten Bayer 54: 281-290.
  10. Kwon, T.S. 2008. Change of abundance of arthropods in pine forests caused by aerial insecticide spray. Archives of Environmental Contamination and Toxicology 54: 92-106. https://doi.org/10.1007/s00244-007-9013-5
  11. Kwon, T.S. 2010. Effect of the application of an organophosphate pesticide (fenitrothion) on foraging behavior of ants. Journal of Korean Forest Society 99: 179-185.
  12. Kwon, T.S., Kim, K.H., Kim, C.S., Lee, J.H., Yun, C.W., Hong, Y. and Kim, J.T. 2005b. Effects of pesticide (fenitrothion) application on soil organisms in pine stand. Journal of Korean Forest Society 94: 420-430.
  13. Kwon, T.S., Park, Y.S., Kwon, Y.H., Song, M.Y., Shin, S.C. and Park, J.D. 2003. Effects of aerial pesticide application on arthropod communities in pine forests. Journal of Korean Forest Society 92: 608-617.
  14. Kwon, T.S., Song, M.Y., Shin, S.C. and Park, Y.S. 2005a. Effects of aerial insecticide sprays on ant communities to control pine wilt disease in Korean pine forests. Applied Entomology and Zoology 40: 563-574. https://doi.org/10.1303/aez.2005.563
  15. Lenth, R. 2016. Least-squares means, version 2.25.
  16. Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). The Canadian Entomology 115(3): 299-302. https://doi.org/10.4039/Ent115299-3
  17. Liu, Z., Dai, Y., Huang, G., Gu, Y., Ni, J., Wei, H. and Yuan, S. 2011. Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application. Pest Manag. Sci. 67(10): 1245-1252. https://doi.org/10.1002/ps.2174
  18. McCune, B. and Grace, J.B. 2002. Analysis of ecological communities. MjM Software Design.
  19. Morewood, W.D., Hein, K.E., Katinic, P.J., and Borden, J.H. 2002. An improved trap for large wood-boring insects, with special reference to Monochamus scutellatus (Coleoptera: Cerambycidae). Canadian Journal of Forest Research 32(3): 519-525. https://doi.org/10.1139/x01-224
  20. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. and Wagner, H. 2017. Package 'vegan'. Community ecology package, version 2.4-2.
  21. Oliver, D.P., Kookana, R.S. and Quintana, B. 2005. Sorption of pesticides in tropical and temperate soils from Australia and the Philippines. Journal of Agricultural and Food Chemistry 53: 6420-6425. https://doi.org/10.1021/jf050293l
  22. Pisa, L.W., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Downs, C.A., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., McField, M., Morrissey, C.A., Noome, D.A., Settele, J., Simon-Delso, N., Stark, J.D., Van der Sluijs, J.P., Van Dyck, H. and Wiemers, M. 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research 22: 68-102. https://doi.org/10.1007/s11356-014-3471-x
  23. R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  24. Schuld, M. and Schmuck, R. 2000. Effects of thiacloprid, a new chloronicotinyl insecticide, on the egg parasitoid Trichogramma cacaoeciae. Ecotoxicology 9(3): 197-205. https://doi.org/10.1023/A:1008994705074
  25. Shin, S.C. 2008. Pine wilt disease in Korea. In: Zhao, B.G., Futai, K., Sutherland, J.R., Takeuchi, Y. (Eds.) Pine wilt disease. Springer, Japan. pp. 26-32.
  26. Statistical Yearbook of Forestry. 2016. Statistical Yearbook of Forestry vol. 46. Forest Service. p 414. (in Korean)
  27. U.S. EPA. 2003. Pesticide fact sheet, thiacloprid. Office of Prevention, Pesticides and Toxic Substances, Washington, DC.
  28. Vidau, C., Diogon, M., Aufauvre, J., Fontbonne, R., Vigues, B., Brunet, J.L., Texier, C., Biron, D.G., Blot, N., Alaoui, H.E., Belzunces, L.P. and Delbac, F. 2011. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6(6): e21550. https://doi.org/10.1371/journal.pone.0021550
  29. Woodcock, B.A. 2005. Pitfall trapping in ecological studies. In: Leather, S.R. (Eds.) Insect sampling in forest ecosystems. Blackwell, Oxford. pp. 37-57.
  30. Yanoviak, S.P., Nadkarni, N.M. and Gering, J.C. 2003. Arthropods in epiphytes: a diversity component that is not effectively sampled by canopy fogging. Biodversity and Conservation 12: 731-741. https://doi.org/10.1023/A:1022472912747