참고문헌
- IK. Fodor, "A survey of dimension reduction techniques." 2002.
- N. Kambhatla and K.L. Todd "Dimension reduction by local principal component analysis." Neural Computation Vol. 9 No. 7, pp. 1493-1516, 1997. https://doi.org/10.1162/neco.1997.9.7.1493
- P. Benner, M. Volker, and C.S. Danny, Dimension reduction of large-scale systems. Vol. 45. Springer-Verlag Berlin Heidelberg, 2005.
- A.N. Gorban, et al., eds. Principal manifolds for data visualization and dimension reduction. Vol. 58. Berlin-Heidelberg: Springer, 2008.
- S. Rahman and X. Heqin, "A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics." Probabilistic Engineering Mechanics Vol. 19 No. 4, pp. 393-408, 2004. https://doi.org/10.1016/j.probengmech.2004.04.003
- M. Robnik-Sikonja, I. Kononenko, "Theoretical and empirical analysis of ReliefF and RReliefF", Machine learning, Vol. 53 No. 1, pp.23-69, 2003. https://doi.org/10.1023/A:1025667309714
- H. Liu, R. Setiono, "Chi2: Feature selection and discretization of numeric attributes", 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, p.388, 1995
- J. Liang, S. Yang, A. Winstanley, "Invariant optimal feature selection: A distance discriminant and feature ranking based solution", Pattern Recognition, Vol. 41 No. 5, pp.429-1439, 2008.
- H. Peng, F. Long, C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27 No. 8, pp. 1226-1238, 2005. https://doi.org/10.1109/TPAMI.2005.159
- M.A. Hall, "Correlation-based feature selection for machine learning", Diss. The University of Waikato, 1999.
- Y. Saeys, I. Inza, P. Larranaga, "A review of feature selection techniques in bioinformatics", bioinformatics, Vol. 23 No. 19, pp. 2507-2517, 2007. https://doi.org/10.1093/bioinformatics/btm344
- P. Horton, K. Nakai. "A Probablistic Classification System for Predicting the Cellular Localization Sites of Proteins", Intelligent Systems in Molecular Biology, pp.109-115, 1996.
- WN. Venables, BD. Ripley, Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0, 2002.
- D. Meyer, E. Dimitriadou , K. Hornik, A. Weingessel, F. Leisch, C. Chang, C. Lin, E1071 package, CARN, 2015
- K. Ron. "A study of cross-validation and bootstrap for accuracy estimation and model selection." Ijcai. Vol. 14 No 2. pp. 1137-11145, 1995.
- Yoon-Su Jeong, "Business Process Model for Efficient SMB using Big Data", Journal of IT Convergence Society for SMB, Vol. 5 No.4, pp. 11-16, 2015.
- Young-Bok Cho, Seng-hee W, Sang-Ho Lee, "In Small and Medium Business the Government 3.0-based Big Data Utilization Policy", Journal of IT Convergence Society for SMB, Vol. 3 No. 1, pp. 15-22, 2013.
- Young-Jun Kim, "Convergence of Business Information System Process using Knowledge-based Method", Journal of the Korea Convergence Society, Vol. 6 No. 4, pp.65-71, 2015. https://doi.org/10.15207/JKCS.2015.6.4.065
- Yong-won Kim, "A study on Convergent & Adaptive Quality Analysis using DQnA model", Journal of the Korea Convergence Society, Vol. 5 No. 4, pp.21-25, 2014. https://doi.org/10.15207/JKCS.2014.5.4.021
- Yoon-Su Jeong, Yong-Tae Kim, Gil-Cheol Park, "Multi-Attribute based on Data Management Scheme in Big Data Environment", Journal of Digital Convergence, Vol. 13 No. 1, pp. 263-268, 2015 https://doi.org/10.14400/JDC.2015.13.1.263
- Jun-Seok Lee, "A Study on the Data Mining Preprocessing Tool For Efficient Database Marketing", Journal of Digital Convergence, Vol. 12 No. 11, pp. 257-264, 2014. https://doi.org/10.14400/JDC.2014.12.11.257