DOI QR코드

DOI QR Code

A Study on the Effective Combining Technology and Credit Appraisal Information in the Innovation Financing Market

기술금융시장에서의 신뢰성있는 기술평가 정보와 신용평가 정보의 최적화 결합에 관한 연구

  • Lee, Jae-Sik (Graduate School of Management of Technology, Korea University) ;
  • Kim, Jae-jin (Division of Master of Inntellectual Porperty, Korea University)
  • 이재식 (기술보증기금.고려대학교 기술경영학과) ;
  • 김재진 (기술보증기금.고려대학교 지식재산학과)
  • Received : 2016.11.21
  • Accepted : 2017.01.20
  • Published : 2017.01.28

Abstract

This study investigates the components and rating system of reliable technology credit information for a technology finance donor who is a consumer of the information and aims to create an effective and optimal technology credit appraisal system to enlarge technology finance supply. Firstly, we calculate the optimal TCAR which becomes the maximum AUROC through the combination of ratio change, verify the substitution possibility between TAR and CR through the existing CR and system gap simulation, and propose a rating system by which financial institutes can utilize the TCAR as a credit rating. As a result, 70% : 30% is the most suitable as the weighted combination ratio of credit rating : technology rating. As a result of this study, we confirmed the possibility that the technical credit rating information could be substituted by the credit rating or the technology appraisal rating. Furthermore, it also suggests that sophisticated risk management is possible through using technology credit rating that are combined with credit and technology appraisal rating.

본 연구는 기술신용정보의 기술금융공여자가 신뢰할 수 있는 기술신용정보의 구성요소와 등급산출체계를 분석하고 이를 토대로 기술금융 공급확대를 유인할 수 있는 최적의 기술신용평가시스템을 도출하는 것이다. 기술평가등급과 신용평가등급의 결합비율 변화를 통해 최대 AUROC 값이 되는 최적화된 기술신용평가등급을 산출하고 기존의 신용평가등급 및 체계 간의 격차 시뮬레이션을 통해 기술신용평가등급과 신용평가등급 간 대체가능성을 검증해 본 후 금융기관이 활용할 수 있는 등급체계를 제시하였다. 연구결과, 기업 규모별, 업종별로 동일하게 신용평점 : 기술평점의 가중치 결합비율 70% : 30% 일 때 AUROC가 가장 높게 나타났다. 본 연구를 통해 기술신용등급의 부도 유의성이 신용등급 또는 기술등급보다 향상된 결과를 확인함에 따라 기술신용평가정보가 신용등급을 대체 적용 가능성을 발견하였고 나아가서 금융기관에서 여신의사결정 시 기술평가정보와 신용평가정보가 최적화 결합된 기술신용등급을 이용하여 정교한 리스크 관리도 가능함을 시사하고 있다.

Keywords

References

  1. R. L. Parr, G. V. Smith, "Quantitative methods of valuing intellectual property", M. Simensky and LG Bryer, The New Role of Intellectual Property in Commercial Transactions, pp.39-68, 1994.
  2. J. F. Coates, "The role of formal models in technology assessment", Technological forecasting and social change, Vol.9, No.1, pp.139-190, 1976. https://doi.org/10.1016/0040-1625(76)90048-2
  3. J. D. Roessner, J. Frey, "Methodology for technology assessment", Technological Forecasting and Social Change, Vol.6, pp.163-169, 1974. https://doi.org/10.1016/0040-1625(74)90015-8
  4. S. Y. Sohn, H. S. Kim, T. H. Moon, "Predicting the financial performance index of technology fund for SME using structural equation model", Expert Systems with Applications, Vol.32, No.3, pp.890-898, 2007. https://doi.org/10.1016/j.eswa.2006.01.036
  5. K. Cho, Y. Cho, J. Kim, D. Yang, "A Verification of Structural Validity for Technology/Credit Appraisal Model of Small and Medium Business Firms", JOURNAL OF TECHNOLOGY INNOVATION, Vol.14, No.1, pp.177-199, 2006.
  6. C. Park, H. Lim, "Prediction of Technology SMEs' Bankruptcy Using Technology Evaluation Information and Their Application to Policies", KIF Research Paper, Vol.2015, No.2, pp.1-185, 2015.
  7. H. Lim, "Firm Char acter istics and Default Predictability: Relationship-Banking, Age, and Size", Journal of Korean Economic Analysis, Vol.22, No.1, pp.81-142, 2016.
  8. E. I. Altman, "Financial ratios, discriminant analysis and the prediction of corporate bankruptcy", The journal of finance, Vol.23, No.4, pp.589-609, 1968. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
  9. G. E. Pinches, J. C. Singleton, "The adjustment of stock prices to bond rating changes", The Journal of Finance, Vol.33, No.1, pp.29-44, 1978. https://doi.org/10.1111/j.1540-6261.1978.tb03387.x
  10. R. W. Holthausen, R. W. Leftwich, "The effect of bond rating changes on common stock prices", Journal of Financial Economics, Vol.17, No.1, pp.57-89, 1986. https://doi.org/10.1016/0304-405X(86)90006-1
  11. J. R. M. Hand, R. W. Holthausen, R. W. Leftwich, "The effect of bond rating agency announcements on bond and stock prices", The journal of finance, Vol.47, No.2, pp.733-752, 1992. https://doi.org/10.1111/j.1540-6261.1992.tb04407.x
  12. OECD, "The SME Financing Gap (Vol. I): Theory and Evidence", p.136, OECD Publishing(Paris), 2006.
  13. G. Kim, J. Woo, "Techniques to Activate Technology Finance: Focusing on Technology Finance Products", p.78, Korea Small Business Institute, 2008.
  14. S. Nam, "Current Status and Future Direction of Technology Finance", Proceedings of Korean Association of Financial Engineering, Vol.2009, No.1, pp.1-20, 2009.
  15. Korea Intellectual Property Office, Presidential Council on Intellectual Property, Financial Services Commission, "Revitalization of intellectual property finance for realization of creative economy", p.16, July, 2013.
  16. MyounJae Lee, Khoe Kyung-Il, "Development Method of Digital Content Finance-Focused on by Technical Value Evaluation", Journal of the Korea Convergence Society, Vol. 6, No. 6, pp. 111-117, 2015. https://doi.org/10.15207/JKCS.2015.6.6.111
  17. Mi-Lim Chon, "Investment and Debt ratio of ICT firms", Journal of the Korea Convergence Society, Vol. 6, No. 1, pp. 103-108, 2015. https://doi.org/10.15207/JKCS.2015.6.1.103