DOI QR코드

DOI QR Code

A Comparison Study on Data Caching Policies of CCN

콘텐츠 중심 네트워킹의 데이터 캐시 정책 비교 연구

  • 김대엽 (수원대학교 정보보호학과)
  • Received : 2016.12.15
  • Accepted : 2017.02.20
  • Published : 2017.02.28

Abstract

For enhancing network efficiency, various applications/services like CDN and P2P try to utilize content which have previously been cached somewhere. Content-centric networking (CCN) also utilizes data caching functionality. However, dislike CDN/P2P, CCN implements such a function on network nodes. Then, any intermediated nodes can directly respond to request messages for cached data. Hence, it is essential which content is cached as well as which nodes cache transmitted content. Basically, CCN propose for every nodes on the path from the content publisher of transmitted object to a requester to cache the object. However, such an approach is inefficient considering the utilization of cached objects as well as the storage overhead of each node. Hence, various caching mechanisms are proposed to enhance the storage efficiency of a node. In this paper, we analyze the performance of such mechanisms and compare the characteristics of such mechanisms. Also, we analyze content utilization patterns and apply such pattern to caching mechanisms to analyze the practicalism of the caching mechanisms.

네트워크 성능 향상을 위하여 CDN/P2P와 같은 기술들은 이전에 사용자들 또는 프락시 시스템에 저장되어 있는 복사본을 사용하도록 설계 되었다. CCN 역시 이와 같은 기능을 구현한다. 그러나 CDN/P2P와 달리, CCN은 이와 같은 캐시 기능을 네트워크 노드에 구현하고, 네트워크 노드들이 콘텐츠 요청 메시지에 직접 응답할 수 있도록 설계 되었다. 그러므로 CCN의 성능에 가장 중요한 요소는 캐시 되는 콘텐츠와 노드를 결정하는 기술이다. 기본적으로, CCN은 콘텐츠가 전송될 때 경유하는 모든 네트워크 노드들에 해당 콘텐츠가 캐시 되도록 설계되었지만, 이와 같은 접근 방법은 중복 캐시 발생으로 인하여 매우 비효율적이라 할 수 있다. 이러한 문제를 해결하기 위하여 다양한 캐시 운영 방법이 제안되었다. 본 논문에서는 지금까지 제안된 캐시 운영 방안들을 살펴보고, 실제 운영을 위해 필요한 효과적인 캐시 운영을 위한 핵심 요구사항들을 제안한다.

Keywords

References

  1. D. Clark, "The Design Philosophy of the DARPA Internet Protocols," ACM Sigcomm Comp. Comm. Review, Vol. 18, No. 1, pp. 106-114, Aug. 1988. https://doi.org/10.1145/52325.52336
  2. "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015-2020," Cisco Public, February 3, 2016
  3. "Cisco Visual Networking Index: Forecast and Methodology, 2015-2020," Cisco Public, February 3, 2016
  4. A. K. Pathan, and R. Buyya, "A Taxonomy and Survey of Content Delivery Networks," Tech Report, Univ. of Melbourne, 2007.
  5. E. Meshkova, J. Riihijarvi, M. Petrova, and P. Mahonen, "A survey on resource discovery mechanisms, peer-to-peer and service discovery frameworks," Computer Networks J., vol. 52, no. 11, pp. 2097-2128, 2008. https://doi.org/10.1016/j.comnet.2008.03.006
  6. G. Han and Y. Jeong, "Communication overhead management techniques based on frequency of convergence contents using the P2P environment," Journal of Digital Convergence, vol.13, no.5, pp.245-250, 2015. 05. https://doi.org/10.14400/JDC.2015.13.5.245
  7. S. Yun, "The Dynamic Group Authentication for P2P based Mobile Commerce," Journal of Digital Convergence, vol.12, no.2, pp.335-341, 2014. 02. https://doi.org/10.14400/JDC.2014.12.2.335
  8. B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher and B. Ohlmann, "A Survey of Information-Centric Networking," IEEE Communications Magazine, Vol. 50, No. 7, pp. 26-36, July 2012. https://doi.org/10.1109/MCOM.2012.6231276
  9. V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs and R. Braynard, "Networking Named Content," 5th International Conference on Emerging Networking Experiments and Technologies, pp. 1-12, 2009.
  10. D. Kim, "Content Centric Networking Naming Scheme for Efficient Data Sharing," Journal of Korea Multimedia Society, Vol. 15, No. 9, pp. 1126-1132, 2012. https://doi.org/10.9717/kmms.2012.15.9.1126
  11. D. Kim, "Trend and Improvement for Privacy Protection of Future Internet," Journal of Digital Convergence, vol.14, no.6, pp.405-413, 2014. 06. https://doi.org/10.14400/JDC.2016.14.6.405
  12. I. Psaras, W. K. Chai, and G. Pavlou, "In-network cache management and resource allocation for information-centric networks," IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 11, pp. 2920-2931, 2013. https://doi.org/10.1109/TPDS.2013.304
  13. N. Laoutaris, H. Che, and I. Stavrakakis, "The lcd interconnection of lru caches and its analysis," Perform. Eval., Vol. 63, No. 7, pp. 609-634, 2006. https://doi.org/10.1016/j.peva.2005.05.003
  14. G. Zhang, Y. Ki, and T. Lin, "Caching in information centric networking: A survey," Computer Networks, Vol. 57, pp-3128-3141, 2013. https://doi.org/10.1016/j.comnet.2013.07.007
  15. M. Zhang, H. Luo, and H. Zhang, "A Survey of Caching Mechanisms in Information-Centric Networking," IEEE communication surveys & tutorials , Vol. 17, No. 3, pp. 1473-1499, 2015 https://doi.org/10.1109/COMST.2015.2420097
  16. K. Cho, M. Lee, K. Park, T. Kwon, Y. Choi and S. Pack, "WAVE: Popularity-based and Collaborative In-network Caching for Content-Oriented Networks," Proceeding of IEEE INFOCOM Workshop on Emerging Design Choices in Name-Oriented Networking (NOMEN), 2012.
  17. Youtube Statistics (2015). https://www.youtube.com/yt/press/en-GB/statistics.html
  18. Youtube Trend Map (2015). https://www.youtube.com/trendsmap
  19. How Many Views Does A Youtube Video Get? Average Views By Category (2015). http://www.reelseo.com/average-youtube-views/
  20. X. Cheng, C. Dale, and J. Liu, "Statistics and Social Network of Youtube Videos," Proceeding of 16th International Workshop on Quality of Service (IWQoS 2008), pp. 229 - 238, 2008.