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Abstract 
The PCI Express is a widely used system bus technology that connects the processor and the peripheral I/O 
devices. The PCI Express is nowadays regarded as a de facto standard in system area interconnection network. 
It has good characteristics in terms of high-speed, low power. In addition, PCI Express is becoming popular 
interconnection network technology as like Gigabit Ethernet, InfiniBand, and Myrinet which are extensively 
used in high-performance computing. In this paper, we designed and implemented a evaluation platform for 
interconnect network using PCI Express between two computing nodes. We make use of the non-transparent 
bridge (NTB) technology of PCI Express in order to isolate between the two subsystems. We constructed a 
testbed system and evaluated the performance on the testbed. 
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1. Introduction 

Today, as the computing technology and network technology development, the amount of data to be 
processed by processors was increased, resulting in high-performance computing. Recent high-
performance computing system are based on a system interconnect technology such as InfiniBand and 
Ethernet, and PCI Express. 

PCI Express bus is originally a technology for the connection among processors, memory, and 
peripheral I/O devices. PCI Express has been developed from 2.5 Gbps Gen1 specification to Gen3 
specification technology. With the increase of speeds and performance needs, there were many requests 
to make use of bus bandwidth efficiently on system interconnection network [1,2]. 

In field of high-performance computing and cluster computing, interconnection network technology 
has been widely studied for a long time. Majority of interconnection network technologies are 
InfiniBand and Ethernet. [3-5] use the PCI Express non-transparent bridge (NTB) to implement a 
multi-host system. The PCI Express NTB solves clock synchronization issues and provides isolation 
between hosts. [6] implemented the DMA transfer with a contiguous buffer using the PCI Express bus. 
This approach enables a DMA transfer for non-contiguous memory. This paper design and implemented 
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PC cluster system based on PCI Express interconnection network technology. In this paper, we use the 
PCI Express NTB to implement a DMA transfer of non-contiguous memory between two systems. 

This paper is organized as follows: Section 1 provides introduction, In Section 2, we show our 
implementation of RDMA transfer on PCI Express NTB. In Section 3, we analyze and compare the 
existing and proposed scheme. Section 4 concludes this paper.  

 
 

2. Implementation of RDMA Transfer on PCI Express 

PCI Express is a further improved version than PCI bus technology developed by INTEL. PCI Ex-
press is a technology by which can be connected with various peripherals or host, support high I/O 
scalability and high-performance, high-speed communication. PCI Express NTB is widely used in the 
multi-host and host-failover. Fig. 1 shows the system architecture in which two hosts are connected 
through PCI Express NTB [7,8]. 

 

 
Fig. 1. Multi-host system hierarchy. 

 
PCI Express is transmitting and receiving data (full-duplex) through an independent link tied to an 

integrated line in one lanes of transmit and receive. PCI Express may be used by a plurality of lanes (×2, 
×4, ×8, ×16) to control the links from a single lane width (X1). PCI Express has the 8 Gbps performance 
of a single-lane Gen3 data rate. Table 1 represents the data transfer rates depending on the generation 
and link width [6,9]. 

 
Table 1. Transfer speed of PCI Express 

Generation 
Lane (width) 

X1 X2 X4 X8 X16 

Gen1 (Gbps) 2.5 5 10 20 30 

Gen2 (Gbps) 5 10 20 40 60 

Gen3 (Gbps) 8 16 32 64 96 

 

PCI Express NTB is used for the mutual isolation in the PCI Express based interconnection network. 
NTB has integrated two conceptual interfaces (endpoints) for two roles in one port. We cannot see the 
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fact that the two systems are connected in the BIOS emulation process due to the logically separated 
interface of PCI Express NTB. Fig. 2 depicts an example in which two systems are connected through 
PCI Express based interconnection network [10]. 

 

 
Fig. 2. Interconnect system with non-transparent bridge. 

 
In Fig. 2, Host A and B can communicate via logical endpoint interface of virtual side and link side 

through address translation. It is necessary to know the address of the external memory when the host 
address translation. There are some scratchpad registers that can be accessed from each of the interface. 
Two hosts may share data with each other via the scratchpad register. It can also cause an interrupt to 
the other party through the Doorbell register. The interconnection network determines where the 
packet is directed through the bus and device information field in the packet header. 

 

 
Fig. 3. Requester ID translation sequence on PCI Express bus. 

 

The bus number and device number are different, so the interconnection network returns a proper 
ID depending on the bus number and device number during address translation. In order to do this, 
there is an address-translation lookup table (LUT) to which we can register an ID, lookup the ID by the 
index. Fig. 3 shows the address translation process of a PCI Express packet. There are also necessary to 
translate memory address on remote DMA transfer, because the destination address on target machine 

Host BHost A

Upstream
Port

Pcle
Switch

NTB
Port

Link Interface

Virtual Interface

Internal Virtual Bus



Feasibility and Performance Analysis of RDMA Transfer through PCI Express 

 

98 | J Inf Process Syst, Vol.13, No.1, pp.95~103, February 2017 

has totally different address management from that on source machine. We make use of direct address 
translation in that the offset address are maintained but only the base address is replace by that of the 
target machine as shown in Fig. 4. 

 

 
Fig. 4. Memory address translation sequence. 
 
 

 
Fig. 5. Our RDMA implementation. 

 
After the address translation as shown in Fig. 4, we implemented the remote DMA (RDMA) 

functions as the process in Fig. 5. The standard interface of RDMA is described in red colored in Fig. 6, 
for example, shmem_int_put(), shmem_double_put(), shmem_int_get(), and shmem_doule_get(). 
After those APIs are called, the first task is attempt to allocate a physically contiguous, page-locked 
buffer which is safe for use with DMA operation. Another step is to map a previously allocated physical 
memory into user virtual space. Then, the memory allocation and mapping are done, so the 
blockDMATransfer() function will be called and executed. 

We also implemented interrupt messaging mechanism using doorbell interrupt. To realize this 
functionality, we have to access the NT0 link side configuration space and NT0 virtual side 
configuration space as shown in Fig. 6. For sending an interrupt on link side, we make use of address 
0x3FC5C. For sending an interrupt on virtual side, we make use of address 0x3EC4C.  
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Fig. 6. Our RDMA implementation. 

 
 

3. Experimental Analysis 

This section provides the design and implementation of evaluation system. Table 2 shows the 
experimental environment of the system. We make use of Core-i5 3.2 GHz, with 2 GB 1333 MHz DDR 
memory. The OS is Centos Linux 7 64 bit, kernel 3.10.0. The interconnection network is based on 
PEX8749 Chipset of PLX Technology. 

 
Table 2. Experiment environment 

Host PC hardware environment  
M/B GIGABYTE GA-H61M-DS2V 
Processor Intel Core i5-3470 CPU @ 3.20GHz X 4 
Memory Samsung DDR3 1333 MHz 2 GB 
O/S Centos Linux 7 64 bit / Kernel: 3.10.0-327.el7 

Interconnect hardware environment  
PCI Express NTB evaluation board PLX PEX8749 RDK / 48 Lane, 18 Port / PCI Express Gen3 Switch 
NIC PLX PEX8732 Cable Adapter X 4 
Driver PLX SDK Device Driver 

 

Table 3. PCI Express link performance 

PCI Express 
version Lind code Transfer rate 

(GT/s) 

Bandwidth  
Per lane

(Gbit/s, MB/s) 
In a ×16 (16-lane) slot 

(Gbit/s, GB/s) 
1.0 8b/10b 2.5 2,  250 32,  4 
2.0 8b/10b 5 4,  500 64,  8 
3.0 128b/130b 8 7.877,  984.6 126.032,  15.754 
4.0 128b/130b 16 15.754,  1969.2 252.064,  31.508 

 

Table 3 provides the performance of PCI Express link. These days we usually utilize the PCI Express 
Gen3, so we can get link performance up to 8 Gbit/s, theoretically. But, the actual performance depends 
on variable situation such as link status, protocol overhead, and so on. 
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To connect a host PC to PEX8749 evaluation board, we need a PEX8732 chipset based network 
interface card for each side. Since the evaluation host supports up to PCI Express Gen2 specification, we 
make use of Gen2 specification both for host and PCI Express NTB evaluation board. Evaluation 
software runs on Centos 7.0 Linux operating system (kernel 3.10.0). For device control, PEX8749 device 
driver was installed as shown in Fig. 7. 

 

  
Fig. 7. Implemented interconnection network system. 

 
First, we show the performance difference between non-DMA transfer using ordinary memcpy and 

PCI Express RDMA transfer and we also evaluate the performance improvement between block RDMA 
transfer and scatter-gather RDMA. 

In each experiment, each host transmits the data through buffer located in BAR (base address 
register). The actual physical address, the virtual address in kernel, and buffer size are send and received 
to each other via scratchpad register in host. In this case, the host buffer ware assigned to the same size. 
We transmit the buffered data to the target host after address translation by using the BAR register. 

Since the BAR memory size is 1 MB, we limit the buffer size to a maximum of 1 MB. In this 
experiments, we transfer the data to Host A from Host B by using one DMA channel. We measured the 
transmission rate with respect to the size and number of buffers. When an interrupt occurs at the end of 
each transfer, we measured the average data transfer rate as a way to send data back and forth. 

 

 
Fig. 8. Result of non-DMA and block DMA transfer (MB/s). 
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Fig. 8 depicts the evaluation between non-DMA transfer and block RDMA transfer. The x-axis shows 
the size of transfer data and the y-axis represents the transfer rate as MB/s, commonly in both graphs. 
When the size of the buffer is small, memcpy and DMA transfer shows low performance at the same 
time. The larger the size of the buffer gets better performance in DMA transfer. This is because the data 
transfer at a time to increase. When the data size is below 2 kB, memcpy showed higher transmission 
rate than DMA transfer. Even if we increase the buffer size in memcpy, it tends to be satisfied at the 
transfer rate of up to 150 MB/s. In more than 4kB buffer size, we got a relatively high performance of up 
to about 500 MB/s in DMA transfer. 

 

 

Fig. 9. Result of block DMA and SGDMA transfer (MB/s). 
 
Scatter-gather DMA (SGDMA) transfer descriptor has the information which is required for DMA 

such as source address, destination address, and byte count. This descriptor enables us to transmit 
multiple DMA buffers or discontinuous address spaces. Fig. 9 shows the performance of SGDMA 
transfer. Fig. 9  shows the evaluation between block RDMA transfer and scatter-gather RDMA transfer. 
The x-axis shows the size of transfer data and the y-axis represents the transfer rate as MB/s, commonly 
in both graphs. We used the 8, 32, 128, 256 descriptors for SGDMA transfer. We specify the data size 
for each descriptor to a value obtained by dividing evenly the same size to the buffer size. The smaller 
the size of the buffer, the more the number of descriptor, we got lower the transmission rate of the 
SGDMA. As a result of execution with 8 descriptors, we got up to 520 MB/s speed. This is slightly 
higher than the performance block DMA. 

 
 

4. Conclusions 

Non-DMA (memcpy) and DMA block exhibited a maximum transmission speed of each to increase 
the larger the size of the buffer transfer rate of about 150 MB/s and 500 MB/s. For SGDMA larger the 
size of the buffer, the number of descriptor was confirmed to represent a slightly better performance 
than the DMA block. The transfer rate is low in transmission rate of up to about 520 MB/s. Due to the 
DMA engine device drivers or user-level overhead of the application due to the limitation of the size of 
the buffer compared to the theoretical performance shows a lower performance. 
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By reducing the overhead due to the processing of the next buffer size and if the PCI Express software 
that take advantage of the bandwidth that is determined to theoretically support can significantly 
improve the performance of the DMA transfer. 

Evaluation result shows that the non-DMA transfer performance is 150 MB/s and the block RDMA 
transfer is improved to 500 MB/s. Finally, SGDMA performance is shown up to 520 MB/s. In this 
paper, it delivers high-performance computing and widely used interconnect technology of the non-
transparent PCI Express switch and connect two PC interconnect system using cluster computing 
bridging that the DMA transfer performance were analyzed between two PC. 
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