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Abstract 
Near-field source localization algorithms are very sensitive to sensor gain/phase response errors, and so it is 
important to calibrate the errors. We took into consideration the uniform linear array and are proposing a 
blind calibration algorithm that can estimate the directions-of-arrival and range parameters of incident 
signals and sensor gain/phase responses jointly, without the need for any reference source. They are estimated 
separately by using an iterative approach, but without the need for good initial guesses. The ambiguities in the 
estimations of 2-D electric angles and sensor gain/phase responses are also analyzed in this paper. We show 
that the ambiguities can be remedied by assuming that two sensor phase responses of the array have been 
previously calibrated. The behavior of the proposed method is illustrated through simulation experiments. 
The simulation results show that the convergent rate is fast and that the convergent precision is high. 
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1. Introduction 

Source localization has been widely used in radars, sonars, sensor networks, and microphone arrays. 
Various algorithms have been proposed for bearing estimation of multiple far-field sources where the 
propagating waves are considered to be plane waves at the sensor array [1,2]. However, when the source 
is located in the near field of the array (Fresnel region of the array), the wavefront emitted by the source 
is spherical, rather than planar, at each sensor. Then, the estimated algorithms of the far-field 
directions-of-arrivals (DOAs) are not applicable. In this situation, more sophisticated algorithms have 
to be derived for estimating the bearing and range to localize the near-field source [3-6].  

Recently, numerous methods have been developed for near-field source localization, such as the 
maximum likelihood method [4], the two-dimensional (2-D) MUSIC method [5], and the higher-order 
ESPRIT method [6]. However, most of these algorithms either require multi-dimensional search or 
suffer from pairing problems or poor resolution due to heavy aperture loss. An estimation algorithm for 
three-dimensional frequency, DOA, and range of near-field sources was proposed in [7], which used a 
second-order statistics (SOS) matrix to estimate the frequency and DOA of each source. A new method 
based on third-order cyclic moment is presented in [8] for the joint estimation of DOAs and range of 
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near-field sources. Some papers have proposed mixed source classification and a localization algorithm, 
which can estimate both near-field and far-field incident source parameters [9-12]. 

However, these algorithms are very sensitive to sensor errors, such as position, orientation, and 
gain/phase response errors. In a practical system, the performance of algorithms is severely degraded 
and even out of work due to unavoidable perturbations in array manifold At the same time, the 
identifiably issue has not been studied completely in the existing literature. For these problems, this 
paper proposes an improved blind calibration algorithm that estimates near-field source parameters 
and sensor gain/phase responses separately and that obtains solutions iteratively but without the need 
for good initial guesses. The uniqueness of the estimations of near-field source parameters and sensor 
gain/phase responses is also discussed. We prove that the ambiguity in the estimations of near-field 
source parameters can be described with two unknown phase rotations. The phase rotations also 
deviate the estimation of the sensor phase response. We also show that the unknown phase rotations 
can be estimated and removed if we assume two sensor phase responses of the array have been 
calibrated. The simulation results show that this method works well. 

 

 

2. Problem Formulation 

2.1 Ideal Signal Model 
 

Suppose that the K  near-field narrowband and independent radiating sources impinge on a 2 1M 
-element uniform linear array (ULA) with inter-element spacing d, which is shown in Fig. 1. Let the 
array center be the phase reference point. The resulting array manifold of the m-th sensor with regard 
to the k-th source signal equals [13,14]: 

 
2( )( , ) ,k kj m mm

k k ka e M m M                                                      (1) 
 

where, k  and k  are called 2-D electrical angles, which are connected to the physical parameters k  

and kr  by: 
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The received signal of the m-th sensor can be written as: 
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Fig. 1. Uniform linear array configuration. 

 
where, K  represents the number of incident sources, ( )ks t is the narrow band source signal with a 

carrier frequency f,   symbolizes the phase of incident signal, s  denotes the amplitude of incident 

signal, and ( )mn t  denotes a zero-mean spatio-temporally uncorrelated random noise process with 

power 2
n . 

 
2.2 Problem Model 
 

In reality, array sensors usually have non-ideal gain/phase responses. They affect the received signal 
by affecting the array manifold a . When the uniform linear array is subject to a priori unknown non-
idealities in the gain or phase response, the signal received by the m-th sensor becomes: 

 

1

( ) ( ) ( )
K

m
m m k k m

k

t Γ a s t n t


 r                                                              (5) 

 
where, ( )mj

m mΓ g e   and mg , m  represent the gain and phase response of the m-th sensor 

respectively. The entire array's (2 1) 1M    received data can be written in matrix multiplication form 
as: 
 

   ( ) , , ( ) ( )t t t z Γ g β A ω φ s n                                                           (6) 

where, 

 0( ) ( ), , ( ), , ( ) T
M Mt r t r t r tz                                                           (7) 

1 2( ) [ ( ) ( ) ( )]TKt s t s t s ts                                                                  (8) 
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 ,A ω φ  is an (2 1)M K   array manifold matrix: 
 

       1 1 2 2, , , , , , ,K K        A ω φ a a a                                         (10) 
 

where,  1 2 K  ω  ,  1 2 K  φ   contain 2K  electric angles, and  ,k k a  

is the array steering vector with regard to the k-th incident source:  
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  1, , , ,
TM M M

k k k k ka a a       a                                                       (11) 

 

where, m
ka  is the array manifold of the m-th sensor given in (1).  ,Γ g β  is an (2 1) (2 1)M M    

gain/phase response diagonal matrix of the entire array:  
 

  0
0, diag{ , , , , }M Mjj j

M Mg e g e g e 
Γ g β                                         (12) 

 
where, 0[ , , , , ]M Mg g gg    and 0[ , , , , ]M M  β   contain 2(2 1)M   non-ideal 
parameters. The present blind calibration method aims to estimate all of the aforementioned 
2(2 1)M   non-ideal parameters ,g β  contained in the matrix  ,Γ g β  plus 2-D electric angles ,ω φ of 

the K  incident sources contained in the matrix  ,A ω φ , given the collected (2 1)M N  data 

 ( ), (2 ), , ( )s s sT T NTZ z z z , where, N  denotes the number of snapshots and sT  symbolizes the 

prior known time-sampling period.  
Computing the covariance matrix of ( )tz : 
 

  2( ) ( )H H H
S nE t t   R z z ΓAR A Γ I                                                 (13) 

 
where SR  is the covariance matrix of the incident sources. The eigen-decomposition of the covariance 
matrix R yields:  

 
H H

S S S N N N R E Λ E E Λ E                                                              (14) 
 

where, 1 2[ ]S KE e ,e , ,e  contains the corresponding eigenvectors of 1 2[ , , , ]S Kdiag   Λ   

spanning the signal subspace of R . Similarly, 1 2 2 1[ ]N K K M  E e ,e , ,e contains the responding 

eigenvectors of 1 2 2 1[ , , , ]N K K Mdiag     Λ   spanning the noise subspace of R . It has been 

shown that ΓA  and SE  span the same subspace    range range SΓA E , that is: 

 
H

S S E E ΓA ΓA                                                                        (15) 
 
 

3. Proposed Method 

In most of the existing calibration algorithms, near-field source parameters and sensor gain/phase 
responses are estimated jointly. Thus, the uniqueness of the estimations of near-field source parameters 
and sensor gain/phase responses is an important problem that needs to be addressed. In reality, the 
estimations of near-field source parameters and sensor gain/phase responses may exist ambiguity. This 
ambiguity problem has not yet been resolved in the literature. In this section, we first discuss the 
uniqueness of the estimations of near-field source parameters and sensor gain/phase responses and then 
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an iterative algorithm for the joint estimation of near-field source parameters and sensor gain/phase 
responses is proposed. 

 
3.1 Uniqueness of Near-Field Source Parameters and Sensor Gain/Phase Responses 

 
The equation we want to solve is:  
 

   range range SΓA E                                                                (16) 
 

where, Γ  and A  are the sensor gain/phase response diagonal matrix and the array manifold matrix, 
which are defined in Subsection 2.2. It implies that if 1 2Γ Γ  and 1 2A A  exist and satisfy:  

 
     1 1 2 2range range range S Γ A Γ A E                                               (17) 

 
then,  1 1Γ A  and  2 2Γ A  are both the possible estimated results, where  1 1 1,Γ Γ g β , 

 2 2 2,Γ Γ g β ,  1 1 1,A A ω φ  and  2 2 2,A A ω φ . It has been proved that if the array 

manifold matrix A  is given, then the sensor gain and phase response matrix Γ  constrained (17) is 
unique. However, when A  and Γ  are both unknown, we can prove that there are many such matrices 
that satisfy condition (17), then the parameter estimation exists ambiguity. Next, we discuss the 
ambiguous relationship between the estimated parameters. Eq. (17) implies that there exists a unique 
nonsingular matrix W , such that: 

 
1 1 2 2Γ A W Γ A                                                                         (18) 

 
If (18) is simplified, we get:  
 

1 2 Γ A W A                                                                           (19) 
 

where, 1
1 2

 Γ Γ Γ  is a diagonal matrix. The m-th row of (19) can be transformed into 1K   
equations: 
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                                                           (20) 

 
where, 1

mA  denotes the m-th row vector of 1A , kw  denotes the k-th column vector of W , and 2
mkA  

denotes the m-th row and the k-th column element of 2A . Eq. (20) can be equivalently written as: 
 

1 1 1 0, 2, ,m m
m kc k K  A w A w                                                         (21) 

 
where,  
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where, a  has the same form with the column vector of A , ma  denotes the m-th element of a , and 

 , ,a b a b   denotes the b-th element of  a aω φ  for 1, 2a  . For , 1, ,m M M M     , we 

obtained:  
 

1 1 1 0, 2, ,k k K  CA w A w                                                           (23) 
 where, 
 

 
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1 2

2, 2,1 2, 2,1

, , ,

,
M

k k

diag c c c

diag    



  

C
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Then, Eq. (23) can be written in the form of the matrix multiplication: 
 

  1
1 1 0, 2, ,

k
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 
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w
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where,  1 1 2, 2,1 1 2, 2,1,k k       CA A ω φ . We defined the composed matrix B as: 

 
 
   

1 1

1 2, 2,1 1 2, 2,1 1 1, ,k k   



      

B CA A

A ω φ A ω φ
                                     (26) 

 
If 1w , kw  have a non-zero solution, the composed matrix B  must be rank deficient. In the case of 

 2 1 2M K  , the composed matrix B  is a square or tall matrix. For the special form of A , the rank 

deficiency of B  implies that  1 2, 2,1 1,k  ω ω  and  1 2, 2,1 1,k  φ φ  must contain repeated 

elements and the repeated elements in 1ω  and 1φ  are related to the identical source. We assumed that 

the elements in  1 1ω φ  are different. Therefore, there exist two elements in  1 1ω φ , denoted as 

    1, 1, 1, 1,, ,m n m n    , which satisfy: 

 
2, 2,1 1, 1,k n m                                                                      (27) 

 
2, 2,1 1, 1,k n m                                                                       (28) 

 
Define  

2, 2,1 2, 2,1,k k k k                                                            (29) 

 
for 2, ,k K  . The set of differences can be effectively presented as  2 , , K    and 
 2 , , K   . By substituting the set of differences into (25), we have:  
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To obtain a solution for W , Eq. (30) needs to be solved for 2, ,k K  . Moreover, the solution of 

1w  of all equations must be identical. This implies that there exists an element in  1 1ω φ  that when 

added with  k k    is still an element of  1 1ω φ . Suppose that this element is the first element, for 

example:  1,1 1,1  . By applying  2 , , K    in sequel we can obtain 1,2 1,, , K   1,2 1,, , K  . 

That is: 1,1 1,k k     , 1,1 1,k k     , 2, ,k K  . Hence:  
 

2 1  ω ω , 2 1  φ φ                                                               (31) 
 

where, 2,1 1,1     and 2,1 1,1     are unknown constants. This indicates that the ambiguities in 

the estimations of near-field source parameters can be characterized by two unknown additive scalars. 
Note that these two unknown additive scalars also deviate the estimation of the sensor phase response. 

Set   ,diag  G a , where: 

 
   2 2( ( ) ) ( ( ) )( , ) [ , ,1, , ]j M M j M Me e        a                                         (32) 

 
From the expression of the array manifold matrix  ,A ω φ  given in (10), we can obtain:  

 
   2 2 2 1 1 1, ,  A A ω φ GA ω φ GA                                                   (33) 

 
We can see from (33) that the diagonal matrix G  is the deviation that the array manifold matrix 

caused to the array gain/phase response matrix. Thus, from (32) we can see that the ambiguity in the 
estimation of near-field source parameters deviates sensor phase responses because G  only contains 
the phase factor and the ambiguous error of the m-th sensor phase response is: 

 
2

m m m                                                                            (34) 
 
We assumed that the m-th sensor real phase response was m  and that the estimation of the m-th 

sensor phase response would be: 
 

2ˆ
m m m m                                                                       (35) 

 
Hence, the unknown scalars introduce undistinguishable errors in the estimations of near-field 

source parameters and sensor phase response. From (32) we noted that the ambiguity only deviates the 
estimation of the phase response and that the solution of the gain response is unique. It is not possible 
to obtain a unique solution for the sensor phase response solely based on (16). An extra constraint must 
be applied to remedy the ambiguity. To solve this problem, we set the phase response of the two sensors 
of the array to be previously calibrated. We assumed that the m1-th and m2-th sensor phase responses 
were calibrated, that is:  

 

1
0m   , 

2
0m                                                                      (36) 
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According to (35), we have: 
 

1

2
1 1

ˆ ( ) ( )m m m                                                                      (37) 
 

2

2
2 2

ˆ ( ) ( )m m m                                                                    (38) 
 
From (37) and (38), we can obtain: 
 

   1 2

2 2 2 2
2 1 2 1 1 2

ˆ ˆ
m mm m m m m m                                                    (39) 

 

   1 2

2 2
2 1 2 1 1 2

ˆ ˆ
m mm m m m m m                                                     (40) 

 

By substituting (39) and (40) into (35), we were able to remove the ambiguity in the estimation of the 
m-th sensor phase response. Then, we obtained the unique estimations of sensor gain/phase response. 

 

3.2 Algorithm 
 

The proposed iterative algorithm flow can be summarized as detailed below. 

1. Initialization: Initialize the gain/phase response diagonal matrix 0Γ̂  using the nominal gain/phase 
responses. Estimate the near-field source parameters  0 0ˆ ˆ,ω φ using the regular near-field source 

parameters estimation algorithms based on the initial value of gain/phase response diagonal 
matrix 0Γ̂ . 

2. Gain/phase response estimation: Apply the latest estimates of near-field source parameters  ˆ ˆ,i iω φ to 

H
S S E E ΓA ΓA , which can be rewritten as    

1

ˆ ˆ
K

H H
i S S i

k

diag diag K


 a E E a v v , where, i denotes the ith 

estimated value and  diagv Γ . Hence, v  can be estimated as the eigenvector of 

   
1

ˆ ˆ
K

H H
i S S i

k

diag diag


W a E E a , which is associated with the largest eigenvalue. Then, the 

gain/phase response estimation ˆ iv can be obtained. 

3. Remove the ambiguity in the estimation of sensor phase response: We assumed that the phase 
response of two sensors was already calibrated. As such, the ambiguity   and   could be 
estimated by (39) and (40) and removed from ˆ iv . Then the new estimated gain/phase response 
diagonal matrix ˆ

iΓ can be obtained. 

4. Near-field source parameters re-estimation: Based on the latest estimation of gain/phase response 
diagonal matrix ˆ

iΓ , re-estimate near-field source parameters  ˆ ˆ,i iω φ  using the regular near-field 

source parameters estimation algorithms. 

5. Determination of convergence: Perform the second, third, and the fourth step iteratively until some 
convergence criterion is achieved. The criteria to judge the convergence is calculated as:  



Han Cui and Wenjuan Peng 
 

 

J Inf Process Syst, Vol.13, No.1, pp.83~94, February 2017 | 91 

   
1

ˆ ˆˆ ˆ
K

H
i N

H H H
i i i i

k
Ndiag gP dia



 E Ev a a v                                                  (41) 

 
If 1i iP P    , (where   is set a small positive value), set 1i i  , and go back to the second step. 

If 1i iP P    , then break, and  ˆ ˆ,i iω φ , ˆ
iΓ  are the final estimates. 

 
 

4. Simulation Results 

We considered a uniform linear array of 2 1 9L M    with an inter-element spacing of / 4d  . If 
two uncorrelated narrow-band near-field incident sources from  1 110/180 , 1.5r      and 
 2 220/180 , 2.0r      impinge on the array, then the non-ideal gain/phase responses are 

[1.2, 1.15, 0.85, 1.25, 1, 0.7, 0.9, 1.1, 0.8] g [0.0, 0.3, 0.2, -0.3, 0.0, 0.5, -0.6, -0.2,  0.0]φ (in radian). 

One thousand Monte Carlo simulations were performed at different SNRs (from 5 to 40 dB) with 1,024 
snapshots. The estimation performance was measured by the root mean square error (RMSE), which 
defined as: 

 

  2

1

1 ˆ( )
L

l
l

RMSE
L

  


  ,    2

1

ˆ1 ( )
L

l

l

r r
RMSE r

L 


   

 
where, , r  denotes the true value of the near-field source parameters and ˆ ˆ, r  denotes the estimates. 

Figs. 2 and 3 show the RMSEs of bearing k  and range kr  estimations (of the two near-field sources) 

using the proposed calibration method under the non-ideal array manifold, where they are all displayed 
versus SNR. It can be seen that the proposed calibration method can dramatically improve the 
estimation precision compared to the algorithms without calibration. 

 

 
Fig. 2. Root mean square errors (RMSEs) of bearing estimates versus SNR. 
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Fig. 3. Root mean square errors (RMSEs) of range estimates versus SNR. 

 

Figs. 4 and 5 show the convergent properties of the gain/phase response estimation, where the SNR is 

set to 20 dB. It can be observed that the iterative procedure converges after 15 iterations. This 

demonstrates that the proposed algorithm provides substantial performance and a fast convergence 

speed. The true values and estimates of the array gain/phase responses are shown in Table 1, where the 

SNR is set to 10 dB. 

 

 
Fig. 4. The convergence property of the estimates of gain response, SNR=20 dB. 
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Fig. 5. The convergence property of the estimates of phase response, SNR=20 dB. 

 
Table 1.  The real value and estimates of gain/phase response (SNR=10 dB) 

Array 
Gain response Phase response (rad) 

Real value Estimate Real value Estimate 
-4 1.2 1.2052 0.0 0.0 
-3 1.15 1.1459 0.3 0.2911 
-2 0.85 0.8494 0.2 0.1988 
-1 1.25 1.2577 -0.3 -0.3089 
0 1 1 0.0 0.0 
1 0.7 0.7064 0.5 0.4932 
2 0.9 0.9135 -0.6 -0.5984 
3 1.1 1.1118 -0.2 -0.1912 
4 0.8 0.8141 0.0 0.0 

 

 

5. Conclusions 

In this paper, we proposed an improved blind calibration algorithm, which estimates the near-field 
source parameters and sensor gain/phase response separately. Our experimental results show that this 
method provides fast convergent speed and high convergent precision. The applicability of the 
proposed algorithm is speaker localization using microphone arrays, guidance (homing) systems, 
radars, sonars, electronic surveillance, and seismic exploration applications. 
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