DOI QR코드

DOI QR Code

비대칭 Si3N4 격자를 사용한 고효율 GMR 컬러 필터의 구현

Implementation of Highly Efficient GMR Color Filter using Asymmetric Si3N4 Gratings

  • 호광춘 (한성대학교 정보통신공학과)
  • 투고 : 2016.02.24
  • 심사 : 2017.02.03
  • 발행 : 2017.02.28

초록

본 논문에서는 높은 효율의 GMR(guided-mode resonant) 컬러 필터를 제안하고 구현하였다. GMR 컬러 필터는 서로 보완적인 고정 격자와 이동 격자가 포함한 $Si_3N_4/air$ 층으로 구성하였다. 제안한 소자는 정확한 등가 전송선로 이론(RETT)에 기초한 수치 해석과 서브 파장 대역에서 동작하는 격자구조를 사용하여 설계하였다. 수치해석 결과, GMR 컬러 필터는 $0.45{\mu}m{\sim}0.55{\mu}m$ 범위에서 blue-green 컬러에 대하여 그리고 $0.6{\mu}m{\sim}0.7{\mu}m$ 범위에서 red 컬러에 대하여 약 35 nm의 동조특성을 보였다. 또한, 컬러 필터는 blue, green 그리고 red 컬러의 중심 주파수에서 각각 99%, 98%, 99%의 효율을 가지고 약 8 nm의 대역폭을 나타내었으며, 앞선 논문들에서 보고된 내용보다 더 높은 효율을 보여주었다.

In this paper, a highly efficient GMR(guided-mode resonant) color filter is proposed and implemented. The GMR color filter consists of $Si_3N_4/air$ layers containing complementary fixed and mobile gratings. The device is designed using RETT(rigorous equivalent transmission-line theory) and a grating structure operating in subwavelength. The numerical result reveals that the color filter has a tuning capability of about 35 nm over the $0.45{\mu}m{\sim}0.55{\mu}m$ range for blue-green color and across $0.6{\mu}m{\sim}0.7{\mu}m$ range for red color. Furthermore, The color filters have a spectral bandwidth of about 8 nm with efficiencies of 99%, 98%, and 99% at the center wavelength of blue, green, and red color, respectively, and these are higher efficiencies than reported in the literature previously.

키워드

참고문헌

  1. R. W. Sabnis, "Color filter technology for liquid crystal displays," Displays, Vol. 20, No. 3, pp. 119-129, 1999. https://doi.org/10.1016/S0141-9382(99)00013-X
  2. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, "Color filter incorporating a subwavelength patterned grating in poly silicon," Opt. Express, Vol. 16, No. 4, pp. 2374-2380, 2008. DOI: https://doi.org/10.1364/OE.16.002374
  3. Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using subwavelength gratings on quartz substrate," IEEE Photon. Technol. Lett., Vol. 20, pp. 2126-2128, 2006. DOI: https://doi.org/10.1109/LPT.2006.883208
  4. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. Vol. 32, No. 14, pp. 2606-2613, 1993. DOI: https://doi.org/10.1364/AO.32.002606
  5. R. Magnusson and Y. Ding, "MEMS tunable resonant leaky mode filters," IEEE Photon. Technol. Lett., Vol. 18, No. 14, pp. 1479-1481, 2006. DOI: https://doi.org/10.1109/LPT.2006.877578
  6. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC press, 2002).
  7. W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonances in photonic crystal slabs," Appl. Phys. Lett., Vol. 82, pp. 1999-2001, 2003. DOI: https://doi.org/10.1063/1.1563739
  8. D. W. Carr, J. P. Sullivan, and T. A. Friedman, "Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave theory," Opt. Lett., Vol. 28, pp. 1636-1638, 2003. DOI: https://doi.org/10.1364/OL.28.001636
  9. Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett., Vol. 90, pp. 031911, 2007. DOI: https://doi.org/10.1063/1.2431452
  10. K. C. Ho, "Diffraction Analysis of Multi-layered Grating Structures using Rigorous Equivalent Transmission-Line Theory," The J. of IIBC, Vol. 15, No. 1, pp. 261-267, 2015. DOI: https://doi.org/10.7236/JIIBC.2015.15.1.261
  11. R. Magnusson and M. Shokooh-Saremi, "Widely tunable guided-mode resonance nanoelectromechanical RGB pixels," Opt. Express Vol. 15, No. 17, pp. 10903-10910, 2007. DOI: https://doi.org/10.1364/OE.15.010903