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A RESEARCH ON A NEW APPROACH TO EULER

POLYNOMIALS AND BERNSTEIN POLYNOMIALS WITH

VARIABLE [x]q
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Abstract. In this paper, we consider a modified Euler polynomials Ẽn,q(x)
with variable [x]q and investigate some interesting properties of the Euler

polynomials. We also give some relationships between the modified Eu-
ler polynomials and their Hurwitz zeta function. Finally, we derive some
identities associated with Bernstein polynomials.
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1. Introduction

The Euler numbers and polynomials have been studied by researchers in many
areas of mathematics, mathematical physics and statistical physics(cf. [1, 3, 5,
6, 7]). Furthermore, many generalized and modified theories are investigated
by them(see [2, 4, 8, 9, 10, 11, 12]). It is well known that the ordinary Euler
numbers and polynomials are defined as below, respectively.

F (t) =
2

et + 1
= eEt =

∞∑
n=0

En
tn

n!
, (1.1)

F (t, x) =
2

et + 1
ext = eE(x)t =

∞∑
n=0

En(x)
tn

n!
. (1.2)

Observe that En(0) = En (cf. [1, 3, 5, 6, 7]).
Let p be an odd prime number. Throughout this paper, the symbol Zp, Qp,

Cp denote the ring of p-adic integers, the field of p-adic rational numbers, the
complex number field, and the completion of algebraic closure ofQp, respectively.
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N denotes the set of natural numbers and Z, Q, C denote the ring of integers, the
field of rational numbers and the set of complex numbers, and Z+ = N ∪ {0}.
Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) =
p−1. When one talks of q-extension, q is considered in many ways such as an
indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, then
one normally assume that |q| < 1. If q ∈ Cp, we assume that |q − 1|p < p−

1
p−1

so that qx = exp(x log q) for |x|p ≤ 1(cf. [1-12]).
Also, in this paper, we use the definition of q-number :

[x]q =
1− qx

1− q
, [x]−q =

1− (−q)x

1 + q
(cf. [3-7]) . (1.3)

Hence, limq→1
1−qx

1−q = x for all x with |x|p ≤ 1 in the present p-adic case.

For g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function}, the
fermionic p-adic integral on Zp is defined by Kim as follows:

I−1(g) =

∫
Zp

g(x)dµ−1(x) = lim
N→∞

1

[pN ]−1

pN−1∑
x=0

g(x)(−1)x (cf. [2, 3, 4, 5]).

(1.4)
Let gn(x) be the translation with gn(x) = g(x + n). Then we have following
integral equation:

I−1(gn) + (−1)n−1I−1(g) = 2
n−1∑
l=0

(−1)n−1−lg(l) (cf. [ 2, 3, 4, 7]). (1.5)

From (1.5), we get

I−1(g1) + I−1(g) = 2g(0), (1.6)

where g1(x) = g(x+ 1). By the definition of p-adic integral and the generating
function of Euler polynomials, we can obtain the relationship between Euler
numbers and polynomials as belows

En(x) = (E + x)n,

E0 = 1, (E + 1)n + En = 2δ0,n, (1.7)

where δi,j =

{
1, if i = j,
0, if i ̸= j.

In this paper, we define the modified Euler polynomials with variable [x]q and
investigate some properties. We try to find relation between modified Euler
polynomials and ordinary Euler numbers and polynomials. Also, we define the
analogue Hurwitz zeta function using modified Euler polynomials. And we study
on the relation between the modified Euler polynomials and Bernstein polyno-
mials with variable [x]q.
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2. The modified Euler polynomials with variable [x]q

In this section, we introduce a new approach to Euler polynomials using vari-
able [x]q. We define a modified Euler polynomials and find some interesting
properties which are related to the Euler polynomials with variable [x]q. From

limq→1
1−qx

1−q = x, we consider the relation between the modified Euler polyno-

mials Ẽn,q(x) and the ordinary Euler polynomials En(x).

Definition 2.1. For q ∈ Cp with |1 − q|p 6 1, we define a modified Euler

polynomials Ẽn,q(x) as below:
∞∑

n=0

Ẽn,q(x)
tn

n!
=

∫
Zp

e(
1−qx

1−q +y)tdµ−1(y).

By using p-adic integral on Zp, we get the generating function of the modified
Euler polynomials as follows:

Fq(t, x) =
2

et + 1
e(

1−qx

1−q )t =
2

et + 1
e[x]qt =

∞∑
n=0

Ẽn,q(x)
tn

n!
. (2.1)

The generating function is related to that of the ordinary Euler polynomials
from (2.1).

lim
q→1

Fq(t, x) = lim
q→1

2

et + 1
e(

1−qx

1−q )t =
∞∑

n=0

En(x)
tn

n!
.

By using Definition 2.1, we obtain the modified Euler polynomials as follows:

Ẽn,q(x) =

∫
Zp

(
1− qx

1− q
+ y)ndµ−1(y), Ẽ0,q(x) = 0. (2.2)

From (2.2), we get the next Theorem.

Theorem 2.2. Let n ∈ N and q ∈ Cp with |1− q|p 6 1. Then we have

Ẽn,q(x) = (
1− qx

1− q
+ E)n.

Proof. By using p-adic integral, we have

Ẽn,q(x) =

∫
Zp

(
1− qx

1− q
+ y)ndµ−1(y)

=
n∑

l=0

(
n

l

)
(
1− qx

1− q
)n−lEl.

(2.3)

Hence, we get the result as below

Ẽn,q(x) = (
1− qx

1− q
+ E)n.

�



208 N. S. Jung, C. S. Ryoo

The result can be expressed Ẽn,q(x) = ([x]q + E)n by the equation (1.6).
From Theorem 2.2, we have the following example.

Remark 2.1. We get the following equations when we substitute n = 1, 2, 3, 4.

Ẽ1,q(x) = (
1− qx

1− q
)− 1

2
,

Ẽ2,q(x) = (
1− qx

1− q
)2 − (

1− qx

1− q
),

Ẽ3,q(x) = (
1− qx

1− q
)3 − 3

2
(
1− qx

1− q
)2 +

1

4
,

Ẽ4,q(x) = (
1− qx

1− q
)4 − 2(

1− qx

1− q
)3 + (

1− qx

1− q
),

...

From remark 2.1, we note that limq→1 Ẽn,q(x) = En(x). So, we can see that

the coefficients of Ẽn,q(x) are equal to the coefficients of Euler polynomials En(x)
(cf. [1]).

From Theorem 2.2, we also have the following corollary.

Corollary 2.3. Let n ∈ N and q ∈ Cp with |1− q|p 6 1. Then we get

Ẽn,q(x+ y) =
n∑

l=0

(
n

l

)
Ẽl,q(x)q

x(n−l)[y]n−l
q .

Proof. By the equation (2.1) and Cauchy product,

∞∑
n=0

Ẽn,q(x+ y)
tn

n!
=

2

et + 1
e[x+y]qt

=

∞∑
n=0

Ẽn,q(x)
tn

n!

∞∑
m=0

(qx[y]q)
m t

m

m!

=
∞∑

n=0

n∑
l=0

(
n

l

)
Ẽl,q(x)(q

x[y]q)
n−l t

n

n!
.

Hence, we have

Ẽn,q(x+ y) =
n∑

l=0

(
n

l

)
Ẽl,q(x)q

x(n−l)[y]n−l
q

tn

n!
.

�

Theorem 2.4. Let n ∈ N and q ∈ Cp. We get

(−1)nẼn,q(1− x) = Ẽn,q−1(x).



On a new approach to Euler polynomials and Bernstein polynomials 209

Proof. If t = −t and x = 1− x in (2.1), then

Fq(−t, 1− x) =
2

e−t + 1
e[1−x]q(−t) =

2

et + 1
e[x]q−1 t

=
∞∑

n=0

Ẽn,q−1(x)
tn

n!
.

Hence we have

Fq(−t, 1− x) =

∞∑
n=0

Ẽn,q−1(x)
tn

n!
.

Therefore we can see that

(−1)nẼn,q(1− x) = Ẽn,q−1(x).

�
From the equation (1.5), we get the following theorem.

Theorem 2.5. Let n ∈ Z+ and q ∈ Cp with |1− q|p 6 1 . Then we have

([x]q +m+ E)n + (−1)m−1Ẽn,q(x) = 2
m−1∑
l=0

(−1)m−1−l([x]q + l)n.

Proof. Let f(y) = e([x]q+y)t. The Equation 1.5 is expressed as below:∫
Zp

e([x]q+y+n)tdµ−1(y) + (−1)n−1

∫
Zp

e([x]q+y)tdµ−1(y)

= 2
n−1∑
l=0

(−1)n−1−le([x]q+l)k .

Then, left-hand side is∫
Zp

e([x]q+y+n)tdµ−1(y) + (−1)n−1

∫
Zp

e([x]q+y)tdµ−1(y)

=
∞∑
k=0

k∑
l=0

(
k

l

)
nlẼk−l,q(x)

tk

k!
+ (−1)n−1

∞∑
n=0

Ẽk,q(x)
tk

k!

=

∞∑
k=0

([x]q + n+ E)k
tk

k!
+ (−1)n−1

∞∑
k=0

Ẽk,q(x)
tk

k!
.

Right-hand side is

2

n−1∑
l=0

(−1)n−1−le([x]q+l)t =

∞∑
k=0

n−1∑
l=0

2(−1)n−1−l([x]q + l)k
tk

k!
.

By using comparing coefficients of tn

n! , we have

([x]q + n+ E)k + (−1)n−1Ẽk,q(x) = 2
n−1∑
l=0

(−1)n−1−l([x]q + l)k.
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�
Theorem 2.6. Let n ∈ Z+. If m ≡ 0 (mod 2), then

([x]q +m+ E)n − Ẽn,q(x) = 2
m−1∑
l=0

(−1)l+1([x]q + l)n.

If m ≡ 1 (mod 2), then

([x]q +m+ E)n + Ẽn,q(x) = 2
m−1∑
l=0

(−1)l([x]q + l)n.

Let m = 1 in Theorem 2.6. Then we have the following theorem.

Theorem 2.7. Let m = 1, n ∈ Z+. Then we have

([x]q + 1 + E)n + Ẽn,q(x) =

{
2 if n = 0,
2[x]nq if n ̸= 0.

3. The analogue of the modified Euler zeta function

In this section, we assume that q ∈ C with |q| < 1. We define the modified
Euler-Hurwitz zeta function with variable [x]q. In other words, the modified
Euler-Hurwitz zeta function interpolates the polynomials. Differentiating the
equation (2.1) gives the following result.

dk

dtk
Fq(t, x)

∣∣∣∣
t=0

= 2
∞∑

m=0

(−1)m([x]q +m)k. (3.1)

We define the modified Euler-Hurwitz zeta function as following definition.

Definition 3.1. For s ∈ C with Re(s) > 0, we define ζq(s, x) by

ζq(s, x) = 2

∞∑
m=1

(−1)m

( 1−qx

1−q +m)s
= 2

∞∑
m=1

(−1)m

([x]q +m)s
.

Note that ζq(s, x) is a meromorphic function on C.

Remark 3.1. If q → 1, then we can observe that limq→1 ζq(s, x) = ζ(s, x).

That is,

lim
q→1

ζq(s, x) = lim
q→1

2
∞∑

m=1

(−1)m

( 1−qx

1−q +m)s
= 2

∞∑
m=0

(−1)m

(x+m)s
.

Relation between ζq(s, x) and Ẽk,q(x) is given by the following theorem.

Theorem 3.2. For k ∈ N, we have

ζq(−k, x) = Ẽk,q(x).

Observe that ζq(−k, x) function interpolates Ẽk,q(x) polynomials at non-negative
integers.
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4. The relations between the modified Euler polynomials and the
Bernstein polynomials

In this section, we investigate the relations between the modified Euler polyn-
imials and the Bernstein polynomials. From Theorem 2.4, we can see that

Ẽn,q(1) = (−1)nẼn,q−1 = (−1)nEn. Then we have the following theorem.

Theorem 4.1. Let n ∈ N. Then we have

Ẽn,q(2) = (q − E)n.

Proof. By using p-adic integral on Zp, we have

Ẽn,q(2) =

∫
Zp

([2]q + y)ndµ−1(y) =
n∑

l=0

(
n

l

)
qn−lẼl,q(1)

=

n∑
l=0

(
n

l

)
qn−l(−1)lẼl,q−1 = (q − Ẽq−1)n.

Thus we can see that
Ẽn,q(2) = (q − E)n.

�

For x ∈ Zp, the Bernstein polynomials of degree n are defined by

Bk,n(x) =

(
n

k

)
xk(1−x)n−k, where x ∈ [0, 1], n, k ∈ Z+. (cf. [3, 5, 8]) (4.1)

By the equation (4.1), we get the symmetry of the Bernstein polynomials as
below:

Bk,n(x) = Bn−k,n(1− x). (4.2)

Using p-aidc integral on Zp , we get the next theorem.

Theorem 4.2. Let n ∈ N. Then we obtain∫
Zp

(1− x)ndµ−1(x) =

n∑
l=0

(
n

l

)
(−1)l(1 + [2]q)

n−lẼl,q(2).

Proof. For n ∈ N, we have∫
Zp

(1− x)ndµ−1(x) =

∫
Zp

(−1)n
n∑

l=0

(
n

l

)
(−1− [2]q)

n−l(x+ [2]q)
ldµ−1(x)

=
n∑

l=0

(
n

l

)
(−1)2n−l(1 + [2]q)

n−l

∫
Zp

(x+ [2]q)
ldµ−1(x)

=
n∑

l=0

(
n

l

)
(−1)l(1 + [2]q)

n−lẼl,q(2).

�
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From p-dic integral for the Bernstein polynomials, we get the following theo-
rem.

Theorem 4.3. For n, k ∈ Z+ with n > k + 1, we have

k∑
l=0

(
k

l

)
(−1)l((1 + [2]q)− Ẽq(2))

n−k+l =

n−k∑
l=0

(
n− k

l

)
(−1)lEk+l.

Proof. For n > k + 1, we get∫
Zp

Bk,n(x)dµ−1(x) =

∫
Zp

(
n

k

)
xk(1− x)n−kdµ−1(x)

=

(
n

k

) k∑
l=0

(
k

l

)
(−1)l

n−k+l∑
s=0

(
n− k + l

s

)
(−1)s(1 + [2]q)

n−k+l−sẼs,q(2)

=

(
n

k

) k∑
l=0

(
k

l

)
(−1)l((1 + [2]q)− Ẽq(2))

n−k+l.

We have that ∫
Zp

Bk,n(x)dµ−1(x) =

∫
Zp

(
n

k

)
xk(1− x)n−kdµ−1(x)

=

∫
Zp

(
n

k

)
xk

n−k∑
l=0

(
n− k

l

)
(−1)lxldµ−1(x)

=

(
n

k

) n−k∑
l=0

(
n− k

l

)
(−1)lEk+l.

Since Ẽn,q = En, we can see that

k∑
l=0

(
k

l

)
(−1)l((1 + [2]q)− Ẽq(2))

n−k+l =
n−k∑
l=0

(
n− k

l

)
(−1)lEk+l.

�
From Theorem 4.1 and Theorem 4.3, we get Corollary 4.4.

Corollary 4.4. Let n, k ∈ Z+ with n > k + 1. Then we derive(
n

k

)
((1 + [2]q)− (q −E)s)n−k(−[2]q + Ẽq(2)))

k =

(
n

k

) n−k∑
l=0

(
n− k

l

)
(−1)lEk+l.

Theorem 4.5. For n1, n2, k ∈ Z+ with n1 + n2 > 2k + 1, we get

2k∑
l=0

(
2k

l

)
(−1)l((1 + [2]q)− Ẽq(2))

nl+n2−2k+l

=

n1+n2−2k∑
l=0

(
n1 + n2 − 2k

l

)
(−1)lE2k+l.
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Proof. Let n1, n2, k ∈ Z+ with n1 + n2 > 2k + 1. Then we have∫
Zp

Bk,n1(x)Bk,n2(x)dµ−1(x)

=

∫
Zp

(
n1
k

)(
n2
k

)
x2k(1− x)n1+n2−2kdµ−1(x)

=

(
n1
k

)(
n2
k

) 2k∑
l=0

(
2k

l

)
(−1)l

∫
Zp

(1− x)n1+n2−2k+ldµ−1(x)

=

(
n1
k

)(
n2
k

) 2k∑
l=0

(
2k

l

)
(−1)l((1 + [2]q)− Ẽq(2))

nl+n2−2k+l.

We can see that∫
Zp

Bk,n1(x)Bk,n2(x)dµ−1(x)

=

∫
Zp

(
n1
k

)(
n2
k

)
x2k(1− x)n1+n2−2kdµ−1(x)

=

(
n1
k

)(
n2
k

) n1+n2−2k∑
l=0

(
n1 + n2 − 2k

l

)
(−1)l

∫
Zp

x2k+ldµ−1(x)

=

(
n1
k

)(
n2
k

) n1+n2−2k∑
l=0

(
n1 + n2 − 2k

l

)
(−1)lE2k+l.

Hence, we obtain

2k∑
l=0

(
2k

l

)
(−1)l((1 + [2]q)− Ẽq(2))

nl+n2−2k+l

=

n1+n2−2k∑
l=0

(
n1 + n2 − 2k

l

)
(−1)lE2k+l.

�
From Theorem 4.1 and Theorem 4.5, we have Corollary 4.6 that is analogous

to Corollary 4.4.

Corollary 4.6. For n1, n2, k ∈ Z+ with n1 + n2 > 2k + 1, then we have

((1 + [2]q)− (q − E))n1+n2−2k(−[2]q + Ẽq(2))
2k

=

n1+n2−2k∑
l=0

(
n1 + n2 − 2k

l

)
(−1)lE2k+l.

Using the above Theorem 4.3, Theorem 4.5 and mathematical induction, we
have the following theorem.
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Theorem 4.7. Let n1, n2, n3, · · ·ns, k ∈ Z+ with n1 + n2 + · · · + ns > tk + 1.
We get

tk∑
l=0

(
tk

l

)
(−1)l((1 + [2]q)− Ẽq(2))

n1+n2+···+nt−tk+l

=

n1+n2+···+nt−tk∑
l=0

(
n1 + n2 + · · ·+ nt − tk

l

)
(−1)lEtk+l.

Proof. Let s ∈ N. For n1, n2, n3, · · ·ns, k ∈ Z+ with n1 + n2 + · · ·+ ns > tk+1.
Then we can see that∫

Zp

( t∏
i=1

Bk,ni(x)
)
dµ−1(x)

=

∫
Zp

( t∏
i=1

(
ni
k

))
xtk(1− x)n1+n2+···+nt−tkdµ−1(x)

=
( t∏

i=1

(
ni
k

)) tk∑
l=0

(
tk

l

)
(−1)l((1 + [2]q)− Ẽq(2))

n1+n2+···+nt−tk.

Also, we have

∫
Zp

( t∏
i=1

Bk,ni(x)
)
dµ−1(x)

=

∫
Zp

( t∏
i=1

(
ni
k

))
xtk

n1+n2+···+nt−tk∑
l=0

(
n1 + n2 + · · ·+ nt − tk

l

)
(−1)lxldµ−1(x)

=
( t∏

i=1

(
ni
k

)) n1+n2+···+nt−tk∑
l=0

(
n1 + n2 + · · ·+ nt − tk

l

)
(−1)lEtk+l.

Therefore we can see that

tk∑
l=0

(
tk

l

)
(−1)l((1 + [2]q)− Ẽq(2))

n1+n2+···+nt−tk+l

=

n1+n2+···+nt−tk∑
l=0

(
n1 + n2 + · · ·+ nt − tk

l

)
(−1)lEtk+l.

�

From Theorem 4.1 and Theorem 4.7, we have the following corollary.
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Corollary 4.8. For n1, n2, n3, · · ·ns, k ∈ Z+ with n1 + n2 + · · · + ns > tk + 1,
we have

((1 + [2]q)− (q − E))n1+n2+···+nt−tk(−[2]q + Ẽq(2))
tk

=

n1+n2+···+nt−tk∑
l=0

(
n1 + n2 + · · ·+ nt − tk

l

)
(−1)lEtk+l
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