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ORTHOGONAL TWO-DIRECTION WAVELETS OF ORDER 2

FROM ORTHOGONAL SYMMETRIC/ANTISYMMETRIC

MULTIWAVELETS†

SOON-GEOL KWON

Abstract. Amethod for recovering Chui-Lian’s orthogonal symmetric/anti-
symmetric multiwavelets of order 2 from orthogonal two-direction wavelets

of order 2 was proposed by Yang and Xie. In this paper we pursue the
converse, that is, we propose a method for constructing orthogonal two-
direction wavelets of order 2 from orthogonal symmetric/antisymmetric

multiwavelets of order 2.
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1. Introduction

A standard (one-direction) scaling function of dilation factor 2 is a real-valued
function ϕ which satisfies a recursion relation of the form

ϕ(x) =
√
2
∑
k∈Z

pk ϕ(2x− k) (1.1)

and generates a multiresolution approximation (MRA) of L2(R). The recursion
coefficients pk are scalars.

Two-direction scaling function ϕ and wavelet function ψ, which are a more
general setting than the one-direction scaling function and wavelet, are investi-
gated in [2, 3, 4, 5, 6, 7].

A two-direction refinable function of dilation factor 2 is a real-valued function
ϕ(x) which satisfies a recursion relation

ϕ(x) =
√
2
∑
k∈Z

[
p+k ϕ(2x− k) + p−k ϕ(k − 2x)

]
(1.2)
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and generates a multiresolution approximation of L2(R).
The two-direction wavelet function ψ associated with ϕ satisfy

ψ(x) =
√
2
∑
k∈Z

[
q+k ϕ(2x− k) + q−k ϕ(k − 2x)

]
. (1.3)

The two-direction scaling function and wavelet function together will be called
a two-direction wavelet.

One-direction wavelet theory needs to be appropriately modified for the two-
direction setting. For example, a basis of the space V0 of the two-direction MRA
is given by

{ϕ(x− k), ϕ(k − x) : k ∈ Z}.
The deduced multiscaling function Φ, of multiplicity 2, is a standard (one-

direction) multiscaling function which satisfies the deduced refinement equation

Φ(x) =

[
ϕ(x)

ϕ(−x)

]
=

√
2
∑
k

[
p+k p−k

p−−k p+−k

]
Φ(2x− k). (1.4)

Many properties of ϕ, such as approximation order, smoothness, and orthogo-
nality, are defined and investigated in terms of corresponding properties of Φ.

In this paper we only consider real recursion coefficients p+k , p
−
k , q

+
k , and q

−
k

in R for k ∈ Z.
In [7], a method for recovering Chui-Lian’s orthogonal symmetric/antisymmetric

multiwavelets of order 2 from orthogonal two-direction wavelets of order 2 was
proposed. Motivated by [7], we pursue the converse of [7] in this paper, that is,
we propose a method for constructing orthogonal two-direction scaling function
of order 2 and wavelet function ψ associated with ϕ from orthogonal symmet-
ric/antisymmetric multiscaling function ϕ = [ϕ1, ϕ2]

T of order 2 and wavelet
ψ = [ψ1, ψ2]

T , respectively.
For an example, we take Chui and Lian’s orthogonal symmetric/antisymmetric

multiscaling functions ϕ of order 2 and multiwavelets ψ in [1]. We obtain two-
direction scaling function ϕ of order 2 supported on [0, 2] and wavelet ψ. The
constructed two-direction wavelets are the same as [7, Example 4.1].

This paper is organized as follows. Constructions of two-direction scaling
functions of order 2 and wavelets from orthogonal symmetric/antisymmetric
multiscaling functions of order 2 and multiwavelets, respectively, are introduced
in section 2. An example for illustrating the general theory in sections 1 and 2
is given in section 3.

2. Two-direction wavelets of order 2 from orthogonal
symmetric/antisymmetric multiwavelets

In this section we propose a method for constructing orthogonal two-direction
scaling function of order 2 and wavelet from orthogonal symmetric/antisymmetric
multiscaling function ϕ = [ϕ1, ϕ2]

T of order 2 and multiwavelet ψ = [ψ1, ψ2]
T .
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2.1. Orthogonal two-direction scaling function of order 2. Orthogonal
symmetric/antisymmetric multiscaling function ϕ = [ϕ1, ϕ2]

T of order 2 sup-
ported on [0, 2] is given as[

ϕ1(x)

ϕ2(x)

]
=

[
a0 b0

c0 d0

] [
ϕ1(2x)

ϕ2(2x)

]
+

[
a1 b1

c1 d1

] [
ϕ1(2x− 1)

ϕ2(2x− 1)

]
+

[
a0 −b0
−c0 d0

] [
ϕ1(2x− 2)

ϕ2(2x− 2)

]
,

(2.1)

where a0, a1, b0, b1, c0, c1, d0, and d1 are constants. (Existence is guaranteed by
Chui-Lian in [1].)

Construct a function ϕ by

ϕ(x) =

√
2

2
[ϕ1(x)− ϕ2(x)] . (2.2)

Since ϕ1(2 − x) = ϕ1(x) and ϕ2(2 − x) = −ϕ2(x) by symmetric/antisymmetric
property, we have

ϕ(2− x) =

√
2

2
[ϕ1(2− x)− ϕ2(2− x)] =

√
2

2
[ϕ1(x) + ϕ2(x)] . (2.3)

By solving (2.2) and (2.3) for ϕ1 and ϕ2, we have

ϕ1(x) =
1√
2
[ϕ(x) + ϕ(2− x)] , ϕ2(x) =

1√
2
[ϕ(2− x)− ϕ(x)] . (2.4)

Clearly, ϕ provides approximation order 2, since ϕ = [ϕ1, ϕ2]
T provides ap-

proximation order 2. ϕ is supported on [0, 2], since ϕ1 and ϕ2 are supported on
[0, 2]. ϕ is refinable, since ϕ1 and ϕ2 are refinable.

Now we want to prove that ϕ is a two-direction refinable function of the form

ϕ(x) =

2∑
k=0

p+k ϕ(2x− k) +

4∑
k=2

p−k ϕ(k − 2x), (2.5)

for some p+k and p−k .
By applying (2.2), we have

√
2ϕ(x) = ϕ1(x)− ϕ2(x)

= (a0 − c0)ϕ1(2x) + (a1 − c1)ϕ1(2x− 1) + (a0 + c0)ϕ1(2x− 2)

+ (b0 − d0)ϕ2(2x) + (b1 − d1)ϕ2(2x− 1) + (−b0 − d0)ϕ2(2x− 2).

By (2.4), we have

2ϕ(x) = (a0 − c0)[ϕ(2x) + ϕ(2− 2x)] + (a1 − c1)[ϕ(2x− 1) + ϕ(3− 2x)]

+ (a0 + c0)[ϕ(2x− 2) + ϕ(4− 2x)] + (b0 − d0)[ϕ(2− 2x)− ϕ(2x)]

+ (b1 − d1)[ϕ(3− 2x)− ϕ(2x− 1)] + (−b0 − d0)[ϕ(4− 2x)− ϕ(2x− 2)]

= (a0 − b0 − c0 + d0)ϕ(2x) + (a1 − b1 − c1 + d1)ϕ(2x− 1)
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+ (a0 + b0 + c0 + d0)ϕ(2x− 2) + (a0 + b0 − c0 − d0)ϕ(2− 2x)

+ (a1 + b1 − c1 − d1)ϕ(3− 2x) + (a0 − b0 + c0 − d0)ϕ(4− 2x).

Hence, we have

ϕ(x) =
2∑

k=0

p+k ϕ(2x− k) +
4∑

k=2

p−k ϕ(k − 2x), (2.6)

where

p+0 = 1
2 (a0 − b0 − c0 + d0), p

+
1 = 1

2 (a1 − b1 − c1 + d1),

p+2 = 1
2 (a0 + b0 + c0 + d0), p

−
2 = 1

2 (a0 + b0 − c0 − d0), (2.7)

p−3 = 1
2 (a1 + b1 − c1 − d1), p

−
4 = 1

2 (a0 − b0 + c0 − d0).

Hence, ϕ is a two-direction refinable function of order 2 supported on [0, 2].

2.2. Orthogonal two-direction wavelet function ψ. Orthogonal symmet-
ric/antisymmetric multiwavelet function ψ = [ψ1, ψ2]

T supported on [0, 2] is
given as [

ψ1(x)

ψ2(x)

]
=

[
a′0 b′0
c′0 d′0

] [
ϕ1(2x)

ϕ2(2x)

]
+

[
a′1 b′1
c′1 d′1

] [
ϕ1(2x− 1)

ϕ2(2x− 1)

]
+

[
a′0 −b′0
−c′0 d′0

] [
ϕ1(2x− 2)

ϕ2(2x− 2)

]
,

(2.8)

where a′0, a
′
1, b

′
0, b

′
1, c

′
0, c

′
1, d

′
0, and d

′
1 are constants. (Existence is guaranteed by

Chui-Lian in [1].)
Construct a function ψ by

ψ(x) =

√
2

2
[−ψ1(−x) + ψ2(−x)] . (2.9)

(By constructing this way, we are able to recover ψ by Yang in [5], see Exam-
ple 3.1 in section 3. There exist many other ways of constructing ψ, which is
orthogonal wavelet corresponding to ϕ.)

Since ψ1(2−x) = ψ1(x) and ψ2(2−x) = −ψ2(x) by symmetric/antisymmetric
property, we have

ψ(x− 2) =

√
2

2
[−ψ1(2− x) + ψ2(2− x)] = −

√
2

2
[ψ1(x) + ψ2(x)] . (2.10)

By solving (2.9) and (2.10) for ψ1 and ψ2, we have

ψ1(x) = − 1√
2
[ψ(−x) + ψ(x− 2)] , ψ2(x) = − 1√

2
[ψ(x− 2)− ψ(−x)] .

(2.11)
Clearly, ψ is supported on [−2, 0], since ϕ1 and ϕ2 are supported on [0, 2]. ψ

is refinable, since ψ1 and ψ2 are refinable.
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Now we want to prove that ψ is a two-direction wavelet function associated
with ϕ of the form

ψ(x) =

−2∑
k=−4

q+k ϕ(2x− k) +

0∑
k=−2

q−k ϕ(k − 2x), (2.12)

for some q+k and q−k .
By applying (2.9), we have

−
√
2ψ(−x) = ϕ1(x)− ϕ2(x)

= (a′0 − c′0)ϕ1(2x) + (a′1 − c′1)ϕ1(2x− 1) + (a′0 + c′0)ϕ1(2x− 2)

+ (b′0 − d′0)ϕ2(2x) + (b′1 − d′1)ϕ2(2x− 1) + (−b′0 − d′0)ϕ2(2x− 2).

By (2.11), we have

−2ψ(−x) = (a′0 − b′0 − c′0 + d′0)ϕ(2x) + (a′1 − b′1 − c′1 + d′1)ϕ(2x− 1)

+ (a′0 + b′0 + c′0 + d′0)ϕ(2x− 2) + (a′0 + b′0 − c′0 − d′0)ϕ(2− 2x)

+ (a′1 + b′1 − c′1 − d′1)ϕ(3− 2x) + (a′0 − b′0 + c′0 − d′0)ϕ(4− 2x).

That is,

−2ψ(x) = (a′0 − b′0 − c′0 + d′0)ϕ(−2x) + (a′1 − b′1 − c′1 + d′1)ϕ(−2x− 1)

+ (a′0 + b′0 + c′0 + d′0)ϕ(−2x− 2) + (a′0 + b′0 − c′0 − d′0)ϕ(2x+ 2)

+ (a′1 + b′1 − c′1 − d′1)ϕ(2x+ 3) + (a′0 − b′0 + c′0 − d′0)ϕ(2x+ 4).

Hence, we have

ψ(x) =
−2∑

k=−4

q+k ϕ(2x− k) +
0∑

k=−2

q−k ϕ(k − 2x), (2.13)

where

q+−4 = −1
2 (a

′
0 − b′0 + c′0 − d′0), q

+
−3 = −1

2 (a
′
1 + b′1 − c′1 − d′1),

q+−2 = −1
2 (a

′
0 + b′0 − c′0 − d′0), q

−
−2 = −1

2 (a
′
0 + b′0 + c′0 + d′0), (2.14)

q−−1 = − 1
2 (a

′
1 − b′1 − c′1 + d′1), q

−
0 = −1

2 (a
′
0 − b′0 − c′0 + d′0).

Hence, ψ is a two-direction wavelet function associated with ϕ supported on
[−2, 0].

2.3. Main Theorem. Before discussing the main Theorem, we need to discuss
the normalization of ϕ. Since ϕ2(x) is antisymmetric about x = 1, we have∫∞
−∞ ϕ2(x) dx =

∫ 2

0
ϕ2(x) dx = 0. If

∫∞
−∞ ϕ1(x) dx = 1, then∫ ∞

−∞
ϕ(x) dx =

√
2

2

∫ ∞

−∞
[ϕ1(x)− ϕ2(x)] dx =

√
2

2
,
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which is a correct normalization for the two-direction scaling functions (For
normalizing condition for ϕ, see [2]). Hence, our construction of ϕ is correctly
normalized.

We have the following main Theorem of this paper from subsections 2.1
and 2.2.

Theorem 2.1. Let ϕ = [ϕ1, ϕ2]
T be an orthogonal symmetric/antisymmetric

multiscaling function of order 2 supported on [0, 2] with nonzero 2× 2 recursion
coefficient matrices h0, h1, h2. Let ψ = [ψ1, ψ2]

T be an orthogonal symmet-
ric/antisymmetric multiwavelet function associated with ϕ supported on [0, 2]
with nonzero 2× 2 recursion coefficient matrices g0, g1, g2. Construct functions
ϕ and ψ by

ϕ(x) =

√
2

2
[ϕ1(x)− ϕ2(x)] ,

ψ(x) =

√
2

2
[−ψ1(−x) + ψ2(−x)] .

(2.15)

Then (i) ϕ is an orthogonal two-direction scaling function of order 2 supported
on [0, 2] such that

ϕ(x) =
2∑

k=0

p+k ϕ(2x− k) +
4∑

k=2

p−k ϕ(k − 2x) (2.16)

for some p+k and p−k ;
(ii) ψ is an orthogonal two-direction wavelet function associated with ϕ sup-

ported on [−2, 0] such that

ψ(x) =

−2∑
k=−4

q+k ϕ(2x− k) +

0∑
k=−2

q−k ϕ(k − 2x) (2.17)

for some q+k and q−k .

3. Example

In this section we provide an example to illustrate the general theory in sec-
tions 1, and 2.

Example 3.1. Chui-Lian’s orthogonal symmetric/antisymmetric multiscaling
function ϕ = [ϕ1, ϕ2]

T of order 2 supported on [0, 2] is given in [1] as[
ϕ1(x)

ϕ2(x)

]
=

[
a0 b0

c0 d0

] [
ϕ1(2x)

ϕ2(2x)

]
+

[
a1 b1

c1 d1

] [
ϕ1(2x− 1)

ϕ2(2x− 1)

]
+

[
a0 −b0
−c0 d0

] [
ϕ1(2x− 2)

ϕ2(2x− 2)

]
,

(3.1)

where

a0 =
1

2
, a1 = 1, b0 =

1

2
, b1 = 0 = c1, c0 = −

√
7

4
, d0 = −

√
7

4
, d1 =

1

2
. (3.2)
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Construct a function ϕ by

ϕ(x) =

√
2

2
[ϕ1(x)− ϕ2(x)] . (3.3)

By applying (2.6) and (2.7), we have

ϕ(x) =
2∑

k=0

p+k ϕ(2x− k) +
4∑

k=2

p−k ϕ(k − 2x), (3.4)

where

p+0 = 0, p+1 =
3

4
, p+2 =

2−
√
7

4
, p−2 =

2 +
√
7

4
, p−3 =

1

4
, p−4 = 0. (3.5)

It turns out that ϕ is the two-direction scaling function

ϕ(x) =
3

4
ϕ(2x− 1) +

2−
√
7

4
ϕ(2x− 1) +

2 +
√
7

4
ϕ(2− 2x) +

1

4
ϕ(3− 2x) (3.6)

in [5, Example 2].
ϕ(2−x), flipping of ϕ(x) about x = 1, is also a two-direction scaling function

of order 2 supported on [0, 2].

Chui-Lian’s [1] orthogonal symmetric/antisymmetric multiwavelet function
ψ = [ψ1, ψ2]

T supported on [0, 2] is given as[
ψ1(x)

ψ2(x)

]
=

[
a′0 b′0
c′0 d′0

] [
ϕ1(2x)

ϕ2(2x)

]
+

[
a′1 b′1
c′1 d′1

] [
ϕ1(2x− 1)

ϕ2(2x− 1)

]
+

[
a′0 −b′0
−c′0 d′0

] [
ϕ1(2x− 2)

ϕ2(2x− 2)

]
,

(3.7)

where

a′0 = −1

2
, a′1 = 1, b′0 = −1

2
, b′1 = 0 = c′1, c

′
0 =

1

4
, d′0 =

1

4
, d′1 =

√
7

2
. (3.8)

Construct a function ψ by

ψ(x) =

√
2

2
[−ψ1(−x) + ϕ2(−x)] . (3.9)

By applying (2.13) and (2.14), we have

ψ(x) =
−2∑

k=−4

q+k ϕ(2x− k) +
0∑

k=−2

q−k ϕ(k − 2x), (3.10)

associated with ϕ, where

q+−4 = 0 = q−0 , q
+
−3 = −2−

√
7

4
, q+−2 =

3

4
, q−−2 =

1

4
, q−−1 = −2 +

√
7

4
. (3.11)

It turns out that ψ is the two-direction wavelet function

ψ(x) =
3

4
ϕ(2x+2)− 2−

√
7

4
ϕ(2x+3)− 2 +

√
7

4
ϕ(−1−2x)+

1

4
ϕ(−2−2x) (3.12)
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associated with ϕ in [5, Example 2].
ψ(−2 − x), flipping of ψ(x) about x = −1, is also a two-direction wavelet

function associated with ϕ(2− x) supported on [−2, 0].
For the graphs of ϕ1, ϕ2, ψ1 and ψ2, see Fig. 3.1. For the graphs of ϕ(x),

ϕ(2− x), ψ(x) and ψ(−2− x), see Fig. 3.2.
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Figure 3.1. Chui-Lian’s orthogonal symmetric/antisymmetric
multiscaling function of order 2 and multiwavelet: (a) ϕ1. (b)
ϕ2. (c) ψ1. (d) ψ2.
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Figure 3.2. Orthogonal two-direction scaling functions of or-
der 2 and wavelet functions from CL2: (a) ϕ(x). (b) ϕ(2 − x).
(c) ψ(x). (d) ψ(−2− x).
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