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Abstract. In this paper, we establish the necessary and sufficient Karush-
Kuhn-Tucker (KKT) conditions for an optimization problem with differ-

ence of set-valued maps under generalized cone convexity assumptions. We
also study the duality results of Mond-Weir (MWD), Wolfe (WD) and
mixed (Mix D) types for the weak solutions of the problem (P).
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1. Introduction

In the theory of nonsmooth optimization, authors are mainly interested to
study the analysis and applications of nonconvex mappings. One type of such
nonconvex mappings is the D. C. mappings i.e. the difference of convex map-
pings. This type of mappings has been studied in optimization theory in [7–10,
12–14]. In 1989, Hiriart-Urruty [12] studied the D. C. optimization problems.
He established the sufficient optimality conditions for such type of problems
with the difference of convex, proper and lower semicontinuous mappings us-
ing the notion of ϵ-subdifferential. In 2009, Lahoussine et al. [13] characterized
the difference of locally Lipschitz D.C. mappings in terms of set-valued map-
ping monotonicity. In the last few years, authors like Flores-Bazán [7], Gadhi
et al. [9, 10] and Taa [14] studied the optimization problems with the difference
of cone convex vector-valued mappings. In 2005, Taa [14] established the opti-
mality conditions for D.C. vector optimization problems by using the Lagrange-
Fritz-John and Lagrange-Karush-Kuhn-Tucker multipliers rules. In [9], Gadhi
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and Metrane established the sufficient optimality conditions for D.C. vector op-
timization problems in ordered Banach space. Later in 2005, Gadhi [8] also
established the necessary optimality conditions for the optimization problems
with the difference of cone convex set-valued mappings by using the notion of
subdifferential, introduced by Baier and Jahn [1]. In 2012, Guo et al. [11] es-
tablished the sufficient optimality condition for generalized D.C. multiobjective
optimization problems by using the notion of subdifferential, introduced by Bor-
wein [3].

In this paper, we are mainly interested to establish the necessary and sufficient
Karush-Kuhn-Tucker (KKT) conditions for the optimization problem (P) with
the difference of set-valued maps under generalized cone convexity assumptions.
We also study the duality results of Mond-Weir (MWD), Wolfe (WD) and
mixed (Mix D) types for the weak solutions of the problem (P).

This paper is organized as follows. In Section 2, we recall some definitions and
preliminary concepts of set-valued mappings and set-valued D.C. optimization
problems. In Section 3, we establish the necessary and sufficient KKT conditions
for the set-valued D.C. optimization problem (P) and prove the duality results of
various types under generalized cone convexity assumption on set-valued maps.

2. Definition and preliminaries

Let Y be a real normed space and K be a non-empty subset of Y . Then K
is said to be a cone if λy ∈ K, for all y ∈ K and λ ≥ 0. Further, K is called
pointed if K ∩ (−K) = {θY }, solid if int(K) ̸= ∅, closed if K = K and convex if
λK + (1− λ)K ⊆ K, for all λ ∈ [0, 1], where int(K) and K denote the interior
and closure of K, respectively and θY is the zero element of Y .

Let Y ∗ be the continuous dual of Y . Suppose that y ∈ Y and y∗ ∈ Y ∗.
Then, by ⟨y∗, y⟩, we mean the canonical bilinear form with respect to the duality
between Y ∗ and Y .

Let K be a solid pointed convex cone of Y . We have the following two types
of cone-orderings in Y with respect to K.
For any y, y′ ∈ Y ,

y ≤ y′ if y′ − y ∈ K

and

y < y′ if y′ − y ∈ int(K).

The following notions of minimality are mainly used in Y with respect to a solid
pointed convex cone K.

Definition 2.1. Let B be a non-empty subset of a real normed space Y . Then
strongly minimal, minimal and weakly minimal points of B are defined as:

(i) y′ ∈ B is a strongly minimal point of B if y′ ≤ y for all y ∈ B.
(ii) y′ ∈ B is a minimal point of B if there is no y ∈ B \ {y′} such that

y ≤ y′.
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(iii) y′ ∈ B is a weakly minimal point of B if there is no y ∈ B such that
y < y′.

The sets of strongly minimal, minimal and weakly minimal points of B are
denoted by s-min(B), min(B) and w-min(B), respectively and characterized as:

s-min(B) =
{
y′ ∈ B : B ⊆ {y′}+K

}
,

min(B) =
{
y′ ∈ B : (y′ −B) ∩B = {y′}

}
and

w-min(B) =
{
y′ ∈ B : (y′ − int(K)) ∩B = ∅

}
.

Similarly, the sets of strongly maximal, maximal and weak maximal points of B
can be defined and characterized.

Let X and Y be real normed spaces, 2Y be the set of all subsets of Y and K
be a solid pointed convex cone in Y . Let F : X → 2Y be a set-valued map from
X to Y i.e., F (x) ⊆ Y , for all x ∈ X.

The effective domain, graph and epigraph of F are defined by:

dom(F ) =
{
x ∈ X : F (x) ̸= ∅

}
,

F (A) =
∪
x∈A

F (x), for any ∅ ≠ A ⊆ X,

gr(F ) =
{
(x, y) ∈ X × Y : y ∈ F (x)

}
and

epi(F ) =
{
(x, y) ∈ X × Y : y ∈ F (x) +K

}
.

Definition 2.2. ( [15]). Let ∅ ̸= A ⊆ X and F : A → 2Y be a set-valued map.
Let x′ ∈ A and y′ ∈ F (x′). A bounded linear operator T : X → Y is called a
weak subgradient for y′ of F at x′ if

y′ − T (x′) ∈ w-min
∪
x∈A

(
F (x)− T (x)

)
.

The set of all weak subgradients for y′ of F at x′ is called the weak subdif-
ferential for y′ of F at x′ and is denoted by ∂wF (x

′; y′). Moreover, F is called
weak subdifferentiable at x′ if ∂wF (x

′; y) ̸= ∅, for all y ∈ F (x′).
Similarly, the notion of strong subgradient and subdifferential have been de-

fined for set-valued case.

Definition 2.3. ( [3]). Let ∅ ̸= A ⊆ X and F : A → 2Y be a set-valued map.
Let x′ ∈ A and y′ ∈ F (x′). A bounded linear operator T : X → Y is called a
strong subgradient for y′ of F at x′ if

y′ − T (x′) ∈ s-min
∪
x∈A

(
F (x)− T (x)

)
.
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The set of all strong subgradients for y′ of F at x′ is called the strong subd-
ifferential for y′ of F at x′ and is denoted by ∂sF (x

′; y′). Moreover, F is called
strong subdifferentiable at x′ if ∂sF (x

′; y) ̸= ∅, for all y ∈ F (x′).

Definition 2.4. ( [2]). Let A be a non-empty convex subset of X. A set-valued
map F : X → 2Y , with A ⊆ dom(F ), is called K-convex on A if ∀x1, x2 ∈ A
and λ ∈ [0, 1],

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2) +K.

It is clear that if the set-valued map F : X → 2Y is K-convex on A, then
epi(F ) is a convex subset of X × Y .

Let X, Y and Z be real normed spaces and A be a nonempty closed convex
subset of X. Let K and L be solid pointed closed convex cones in Y and Z,
respectively. Suppose that F1 : X → 2Y , F2 : X → 2Y , G1 : X → 2Z and
G2 : X → 2Z are set-valued maps with

A ⊆ dom(F1) ∩ dom(F2) ∩ dom(G1) ∩ dom(G2).

Consider the optimization problems with difference of set-valued maps:

minimize
x∈A

F1(x)− F2(x),

subject to,
(
G1(x)−G2(x)

)∩
(−L) ̸= ∅.

(P)

Here, the feasible set S of the problem (P) is defined by

S =
{
x ∈ A :

(
G1(x)−G2(x)

)∩
(−L) ̸= ∅

}
.

Definition 2.5. A point (x′, y′1 − y′2) ∈ X × Y , with x′ ∈ S, y′1 ∈ F1(x
′)

and y′2 ∈ F2(x
′), is called a minimizer of the problem (P) if there exist no

(x, y1 − y2) ∈ X × Y , with x ∈ S, y1 ∈ F1(x) and y2 ∈ F2(x), such that

(y1 − y2)− (y′1 − y′2) ∈ −K \ {θY }.
Definition 2.6. A point (x′, y′1 − y′2) ∈ X × Y , with x′ ∈ S, y′1 ∈ F1(x

′) and
y′2 ∈ F2(x

′), is called a weak minimizer of the problem (P) if there exist no
(x, y1 − y2) ∈ X × Y , with x ∈ S, y1 ∈ F1(x) and y2 ∈ F2(x), such that

(y1 − y2)− (y′1 − y′2) ∈ −int(K).

3. Main results

We introduce the notion of ρ-cone convexity of set-valued maps in [6]. For
ρ = 0, we have the usual notion of cone convexity of set-valued maps.

Definition 3.1. ( [6]). LetX,Y be real normed spaces, A be a nonempty convex
subset of X, K be a solid pointed convex cone in Y , e ∈ int(K) and F : X → 2Y

be a set-valued map, with A ⊆ dom(F ). Then F is said to be ρ-K-convex with
respect to e on A if there exists ρ ∈ R such that

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2) + ρλ(1− λ)∥x1 − x2∥2e+K,

∀x1, x2 ∈ A and ∀λ ∈ [0, 1].
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If ρ > 0, then F is said to be strongly ρ-cone convex, for ρ = 0 we get the
usual notion of cone convexity and if ρ < 0, then F is said to be weakly ρ-cone
convex. In [6], we give an example of ρ-cone convex set-valued map, which is
not cone convex.

In the following lemma, we characterize ρ-cone convexity in terms of strong
subdifferential of set-valued maps.

Lemma 3.1. Let A be a convex subset of X, x′ ∈ A and e ∈ int(K). Let
F : X → 2Y be ρ-K-convex with respect to e on A. Then, for any y′ ∈ F (x′)
and T ′ ∈ ∂sF (x

′; y′), we have

F (x)− y′ − T ′(x− x′)− ρ∥x− x′∥2e ⊆ K, ∀x ∈ A.

Proof. Let x ∈ A and λ ∈ [0, 1].
Since F : X → 2Y is a ρ-K-convex with respect to e on A,

λF (x) + (1− λ)F (x′) ⊆ F (λx+ (1− λ)x′) + ρλ(1− λ)∥x− x′∥2e+K.

Let y ∈ F (x) and y′ ∈ F (x′).
Therefore,

λy + (1− λ)y′ = u+ ρλ(1− λ)∥x− x′∥2e+ c,

for some u ∈ F (λx+ (1− λ)x′) and c ∈ K.
Since T ′ ∈ ∂sF (x

′; y′),

y′ − T ′(x′) ∈ s-min
∪
x∈A

(
F (x)− T ′(x)

)
.

It follows that

F
(
λx+ (1− λ)x′

)
− y′ ≥ T ′

(
λx+ (1− λ)x′ − x′

)
= λT ′(x− x′).

Therefore,

u− y′ ≥ λT ′(x− x′).

Hence,

λ(y − y′)− ρλ(1− λ)∥x− x′∥2e ≥ λ(y − y′)− ρλ(1− λ)∥x− x′∥2e− c

= u− y′

≥ λT ′(x− x′).

Consequently,

y − y′ − ρ∥x− x′∥2e+ ρλ∥x− x′∥2e ≥ T ′(x− x′),

which is true for all λ ∈ [0, 1].
Therefore,

y − y′ − ρ∥x− x′∥2e ≥ T ′(x− x′).

Since y ∈ F (x) be arbitrary, we have

F (x)− y′ − ρ∥x− x′∥2e ≥ T ′(x− x′).
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Therefore,

F (x)− y′ − T ′(x− x′)− ρ∥x− x′∥2e ⊆ K, ∀x ∈ A.

�

We establish the necessary KKT conditions for the set-valued D.C. optimiza-
tion problem (P) under ρ-cone convexity assumption on set-valued maps.

Theorem 3.1. Let A be a convex subset of X, ρ1, ρ2, ρ
′
1, ρ

′
2 ∈ R, e1, e2 ∈ int(K)

and e′1, e
′
2 ∈ int(L). Let (x′, y′1−y′2), with x′ ∈ A, y′1 ∈ F1(x

′) and y′2 ∈ F2(x
′), be

a weak minimizer of the problem (P) and there exist z′1 ∈ G1(x
′) and z′2 ∈ G2(x

′),
with

z′1 − z′2 ∈ −L.
Suppose that F1 : X → 2Y is weakly ρ1-K-convex with respect to e1 and
G1 : X → 2Z is strongly ρ′1-L-convex with respect to e′1, on A, with

ρ1⟨y∗, e1⟩+ ρ′1⟨z∗, e′1⟩ ≥ 0. (3.1)

Also, suppose that F2 : X → 2Y is weakly ρ2-K-convex with respect to e2 and
G2 : X → 2Z is strongly ρ′2-L-convex with respect to e′2, on A.
Then there exists (θY ∗ , θZ∗) ̸= (y∗, z∗) ∈ K+ × L+ such that

y∗T1 + z∗T2 ∈ ∂s(y
∗F1 + z∗G1)(x

′; ⟨y∗, y′1⟩+ ⟨z∗, z′1⟩),
∀T1 ∈ ∂sF2(x

′; y′2) and T2 ∈ ∂sG2(x
′; z′2)

and

⟨z∗, z′1 − z′2⟩ = 0.

Proof. Let T1 ∈ ∂sF2(x
′; y′2) and T2 ∈ ∂sG2(x

′; z′2).
We claim that the system

F1(x)− y′1 − T1(x− x′) < ρ1∥x− x′∥2e1
G1(x)− z′2 − T2(x− x′) < ρ′1∥x− x′∥2e′1

has no solution in A.
Suppose that the system has a solution x0 ∈ A.
Therefore,

F1(x0)− y′1 − T1(x0 − x′)− ρ1∥x0 − x′∥2e1 ⊆ −int(K)

and

G1(x0)− z′2 − T2(x0 − x′)− ρ′1∥x0 − x′∥2e′1 ⊆ −int(L).

As F2 : X → 2Y is weakly ρ2-K-convex with respect to e2 and G2 : X → 2Z

is strongly ρ′2-L-convex with respect to e′2, on A and T1 ∈ ∂sF2(x
′; y′2) and

T2 ∈ ∂sG2(x
′; z′2), we have

F2(x0)− y′2 − T1(x0 − x′)− ρ2∥x0 − x′∥2e2 ⊆ K

and

G2(x0)− z′2 − T2(x0 − x′)− ρ′2∥x0 − x′∥2e′2 ⊆ L.
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Hence,

−F2(x0) + y′2 + T1(x0 − x′) + ρ2∥x0 − x′∥2e2 ⊆ −K
and

−G2(x0) + z′2 + T2(x0 − x′) + ρ′2∥x0 − x′∥2e′2 ⊆ −L.
Therefore,

F1(x0)− y′1 ⊆ T1(x0 − x′) + ρ1∥x0 − x′∥2e1 − int(K)

⊆ F2(x0)− y′2 + ∥x0 − x′∥2(ρ1e1 − ρ2e2)− int(K)−K

⊆ F2(x0)− y′2 + ∥x0 − x′∥2(ρ1e1 − ρ2e2)− int(K).

Since ρ1 ≤ 0 and ρ2 ≥ 0,

ρ1e1 − ρ2e2 ∈ −K.
Hence,

F1(x0)− y′1 ⊆ F2(x0)− y′2 − int(K).

Similarly, we have

G1(x0) ⊆ G2(x0) + (z′2 − z′2)− int(L) ⊆ G2(x0)− int(L).

It contradicts that (x′, y′1 − y′2) is a weak minimizer of the problem (P).
Therefore, the system has no solution in A.
As F1 : X → 2Y is weakly ρ1-K-convex with respect to e1 and G1 : X → 2Z is
strongly ρ′1-L-convex with respect to e′1, on A,
F1(.)− y′1 − T1(.− x′) : X → 2Y is weakly ρ1-K-convex with respect to e1 and
G1(.)− z′2 − T2(.− x′) : X → 2Z is strongly ρ′1-L-convex with respect to e′1, on
A.
Therefore, there exists (θY ∗ , θZ∗) ̸= (y∗, z∗) ∈ K+ × L+ such that⟨

y∗, F1(x)− y′1 − T1(x− x′)
⟩
+
⟨
z∗, G1(x)− z′2 − T2(x− x′)

⟩
−
(
ρ1⟨y∗, e1⟩+ ρ′1⟨z∗, e′1⟩

)
∥x− x′∥2 ≥ 0.

From (3.1), we have⟨
y∗, F1(x)− y′1 − T1(x− x′)

⟩
+
⟨
z∗, G1(x)− z′2 − T2(x− x′)

⟩
≥ 0. (3.2)

Putting x = x′ in (3.2), we have

⟨z∗, z′1 − z′2⟩ ≥ 0.

Again, since z′1 − z′2 ∈ −L,
⟨z∗, z′1 − z′2⟩ ≤ 0.

Therefore,

⟨z∗, z′1 − z′2⟩ = 0.

Hence,

⟨z∗, z′1⟩ = ⟨z∗, z′2⟩.



154 K. Das and C. Nahak

Consequently, from (3.2), we have⟨
y∗, F1(x)− y′1 − T1(x− x′)

⟩
+
⟨
z∗, G1(x)− z′1 − T2(x− x′)

⟩
≥ 0. (3.3)

It shows that

⟨y∗, y′1⟩+ ⟨z∗, z′1⟩ − (y∗T1 + z∗T2)(x
′)

≤ ⟨y∗, F1(x)⟩+ ⟨z∗, G1(x)⟩ − (y∗T1 + z∗T2)(x).

Therefore,

⟨y∗, y′1⟩+ ⟨z∗, z′1⟩ − (y∗T1 + z∗T2)(x
′)

∈ min
∪
x∈A

(
(y∗F1 + z∗G1)(x)− (y∗T1 + z∗T2)(x)

)
.

Hence,

y∗T1 + z∗T2 ∈ ∂s(y
∗F1 + z∗G1)(x

′; ⟨y∗, y′1⟩+ ⟨z∗, z′1⟩).
�

3.1. Sufficient optimality conditions. We establish the sufficient KKT con-
ditions for the set-valued D.C. optimization problem (P) under ρ-cone convexity
assumption on set-valued maps.

Theorem 3.2. Let A be a convex subset of X, ρ1, ρ2, ρ
′
1, ρ

′
2 ∈ R, e1, e2 ∈ int(K)

and e′1, e
′
2 ∈ int(L). Suppose that x′ ∈ S, y′1 ∈ F1(x

′), y′2 ∈ F2(x
′) and there

exist z′1 ∈ G1(x
′) and z′2 ∈ G2(x

′), with

z′1 − z′2 ∈ −L.
Suppose that F2 : X → 2Y is ρ2-K-convex with respect to e2 and G2 : X → 2Z

is ρ′2-L-convex with respect to e′2, on A, satisfying

ρ2⟨y∗, e2⟩+ ρ′2⟨z∗, e′2⟩ ≥ 0. (3.4)

Assume that for any x ∈ A, y2 ∈ F2(x) and z2 ∈ G2(x), ∂sF2(x; y2) ̸= ∅ and
∂sG2(x; z2) ̸= ∅. If there exist y∗ ∈ K+ \ {θY ∗} and z∗ ∈ L+ such that

y∗T1 + z∗T2 ∈ ∂s(y
∗F1 + z∗G1)(x

′; ⟨y∗, y′1⟩+ ⟨z∗, z′1⟩),
∀T1 ∈ ∂sF2(x; y2), T2 ∈ ∂sG2(x; z2), x ∈ A, y2 ∈ F2(x) and z2 ∈ G2(x)

(3.5)

and

⟨z∗, z′1 − z′2⟩ = 0, (3.6)

then (x′, y′1 − y′2) is a weak minimizer of the problem (P).

Proof. Let x ∈ S, y1 ∈ F1(x) and y2 ∈ F2(x).
Hence, there exist z1 ∈ G1(x) and z2 ∈ G2(x) such that

z1 − z2 ∈ −L.
As F2 : X → 2Y is ρ2-K-convex with respect to e2 and G2 : X → 2Z is ρ′2-L-
convex with respect to e′2, on A and T1 ∈ ∂sF2(x; y2) and T2 ∈ ∂sG2(x; z2),

F2(x
′)− y2 − T1(x

′ − x)− ρ2∥x′ − x∥2e2 ⊆ K
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and
G2(x

′)− z2 − T2(x
′ − x)− ρ′2∥x′ − x∥2e′2 ⊆ L.

Therefore,
y′2 − y2 − T1(x

′ − x)− ρ2∥x′ − x∥2e2 ∈ K

and
z′2 − z2 − T2(x

′ − x)− ρ′2∥x′ − x∥2e′2 ∈ L.

Therefore,

⟨y∗, y′2 − y2⟩ − y∗T1(x
′ − x)− ρ2∥x′ − x∥2⟨y∗, e2⟩ ≥ 0

and
⟨z∗, z′2 − z2⟩ − z∗T2(x

′ − x)− ρ′2∥x′ − x∥2⟨z∗, e′2⟩ ≥ 0.

It follows that

⟨y∗, y′2 − y2⟩+ ⟨z∗, z′2 − z2⟩ − (y∗T1 + z∗T2)(x
′ − x)

≥ (ρ2⟨y∗, e2⟩+ ρ′2⟨z∗, e′2⟩)∥x′ − x∥2.
By (3.4), we have

⟨y∗, y′2 − y2⟩+ ⟨z∗, z′2 − z2⟩ − (y∗T1 + z∗T2)(x
′ − x) ≥ 0. (3.7)

By assumption, there exist y∗ ∈ K+ \ {θY ∗} and z∗ ∈ L+ such that

y∗T1 + z∗T2 ∈ ∂s(y
∗F1 + z∗G1)(x

′; ⟨y∗, y′1⟩+ ⟨z∗, z′1⟩).
Therefore,

⟨y∗, y′1⟩+ ⟨z∗, z′1⟩ − (y∗T1 + z∗T2)(x
′)

∈ min
∪
x∈A

(
(y∗F1 + z∗G1)(x)− (y∗T1 + z∗T2)(x)

)
.

Hence,
⟨y∗, y′1⟩+ ⟨z∗, z′1⟩ − (y∗T1 + z∗T2)(x

′)

≤ (y∗F1 + z∗G1)(x)− (y∗T1 + z∗T2)(x).

Since y1 ∈ F1(x) and z1 ∈ G1(x),

⟨y∗, y1 − y′1⟩+ ⟨z∗, z1 − z′1⟩ − (y∗T1 + z∗T2)(x− x′) ≥ 0. (3.8)

From (3.7) and (3.8), we have

⟨y∗, y1 − y′1⟩+ ⟨z∗, z1 − z′1⟩ −
(
⟨y∗, y2 − y′2⟩+ ⟨z∗, z2 − z′2⟩

)
≥ 0.

As ⟨z∗, z′1 − z′2⟩ = 0, we have

⟨y∗, y1 − y′1⟩ − ⟨y∗, y2 − y′2⟩+ ⟨z∗, z1 − z2⟩ ≥ 0.

As z1 − z2 ∈ −L and z∗ ∈ L+, we have

⟨z∗, z1 − z2⟩ ≤ 0.

It shows that
⟨y∗, y1 − y′1⟩ − ⟨y∗, y2 − y′2⟩ ≥ 0.

It implies that
⟨y∗, y1 − y2 − (y′1 − y′2)⟩ ≥ 0.
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Hence,

y1 − y2 − (y′1 − y′2) ∈ Y \ (−int(K)).

Therefore, (x′, y′1 − y′2) is a weak minimizer of the problem (P). �

3.2. Mond-Weir type dual. We prove the duality results of Mond-Weir type
for the set-valued D.C. optimization problems (P).
Consider Mond-Weir type dual (MWD) corresponding to the problem (P). As-
sume that for any x ∈ A, y2 ∈ F2(x) and z2 ∈ G2(x), ∂sF2(x; y2) ̸= ∅ and
∂sG2(x; z2) ̸= ∅.

minimize
x∈A

y′1 − y′2, (MWD)

subject to,

y∗T1 + z∗T2 ∈ ∂s(y
∗F1 + z∗G1)(x

′; ⟨y∗, y′1⟩+ ⟨z∗, z′1⟩),
∀T1 ∈ ∂sF2(x; y2), T2 ∈ ∂sG2(x; z2), x ∈ A, y2 ∈ F2(x) and z2 ∈ G2(x),

⟨z∗, z′1 − z′2⟩ ≥ 0,

x′ ∈ A, y′1 ∈ F1(x
′), y′2 ∈ F2(x

′), z′1 ∈ G1(x
′), z′2 ∈ G2(x

′),

y∗ ∈ K+ \ {θY ∗} and z∗ ∈ L+.

A point (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) satisfying all the constraints of (MWD) is called
a feasible point of the problem (MWD).

Definition 3.2. A feasible point (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) of the problem (MWD)
is said to be a weak maximizer of (MWD) if there exists no feasible point
(x, y1, y2, z1, z2, y

∗
1 , z

∗
1) of (MWD) such that

(y1 − y2)− (y′1 − y′2) ∈ int(K).

Theorem 3.3. (Weak duality) Let A be a convex subset of X, ρ2, ρ
′
2 ∈ R,

e2 ∈ int(K) and e′2 ∈ int(L). Let x0 ∈ S and (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) be a
feasible point of the problem (MWD). Suppose that F2 : X → 2Y is ρ2-K-
convex with respect to e2 and G2 : X → 2Z is ρ′2-L-convex with respect to e′2,
on A, satisfying (3.4).
Then,

F1(x0)− F2(x0)− (y′1 − y′2) ⊆ Y \ −int(K).

Proof. We prove the theorem by the method of contradiction.
Suppose that for some y1 ∈ F1(x0) and y2 ∈ F2(x0),

y1 − y2 − (y′1 − y′2) ∈ −int(K).

As y∗ ∈ K+ \ {θY ∗}, ⟨
y∗, y1 − y2 − (y′1 − y′2)

⟩
< 0. (3.9)

Since x0 ∈ S, there exist z1 ∈ G1(x0) and z2 ∈ G2(x0) such that

z1 − z2 ∈ −L.
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As F2 : X → 2Y is ρ2-K-convex with respect to e2 and G2 : X → 2Z is ρ′2-L-
convex with respect to e′2, on A and T1 ∈ ∂sF2(x0; y2) and T2 ∈ ∂sG2(x0; z2),

F2(x
′)− y2 − T1(x

′ − x0)− ρ2∥x′ − x0∥2e2 ⊆ K

and
G2(x

′)− z2 − T2(x
′ − x0)− ρ′2∥x′ − x0∥2e′2 ⊆ L.

Therefore,
y′2 − y2 − T1(x

′ − x0)− ρ2∥x′ − x0∥2e2 ∈ K

and
z′2 − z2 − T2(x

′ − x0)− ρ′2∥x′ − x0∥2e′2 ∈ L.

Therefore,

⟨y∗, y′2 − y2⟩ − y∗T1(x
′ − x0)− ρ2∥x′ − x0∥2⟨y∗, e2⟩ ≥ 0

and
⟨z∗, z′2 − z2⟩ − z∗T2(x

′ − x0)− ρ′2∥x′ − x0∥2⟨z∗, e′2⟩ ≥ 0.

It follows that

⟨y∗, y′2 − y2⟩+ ⟨z∗, z′2 − z2⟩ − (y∗T1 + z∗T2)(x
′ − x0)

≥ (ρ2⟨y∗, e2⟩+ ρ′2⟨z∗, e′2⟩)∥x′ − x0∥2.

From (3.4), we have

⟨y∗, y′2 − y2⟩+ ⟨z∗, z′2 − z2⟩ − (y∗T1 + z∗T2)(x
′ − x0) ≥ 0. (3.10)

From the constraints of (MWD), we have

y∗T1 + z∗T2 ∈ ∂s(y
∗F1 + z∗G1)(x

′; ⟨y∗, y′1⟩+ ⟨z∗, z′1⟩).
Therefore,

⟨y∗, y′1⟩+ ⟨z∗, z′1⟩ − (y∗T1 + z∗T2)(x
′)

∈ min
∪
x∈A

(
(y∗F1 + z∗G1)(x)− (y∗T1 + z∗T2)(x)

)
.

Hence,
⟨y∗, y′1⟩+ ⟨z∗, z′1⟩ − (y∗T1 + z∗T2)(x

′)

≤ (y∗F1 + z∗G1)(x0)− (y∗T1 + z∗T2)(x0).

Since y1 ∈ F1(x0) and z1 ∈ G1(x0),

⟨y∗, y1 − y′1⟩+ ⟨z∗, z1 − z′1⟩ − (y∗T1 + z∗T2)(x0 − x′) ≥ 0. (3.11)

From (3.10) and (3.11), we have

⟨y∗, y1 − y′1⟩+ ⟨z∗, z1 − z′1⟩ −
(
⟨y∗, y2 − y′2⟩+ ⟨z∗, z2 − z′2⟩

)
≥ 0.

From the constraints of (MWD), we have

⟨z∗, z′1 − z′2⟩ ≥ 0.

So,
⟨y∗, y1 − y′1⟩ − ⟨y∗, y2 − y′2⟩+ ⟨z∗, z1 − z2⟩ ≥ 0.
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As z1 − z2 ∈ −L and z∗ ∈ L+, we have

⟨z∗, z1 − z2⟩ ≤ 0.

It shows that

⟨y∗, y1 − y′1⟩ − ⟨y∗, y2 − y′2⟩ ≥ 0.

It implies that

⟨y∗, y1 − y2 − (y′1 − y′2)⟩ ≥ 0,

which contradicts (3.9).
Therefore,

F1(x0)− F2(x0)− (y′1 − y′2) ⊆ Y \ −int(K).

�

Theorem 3.4. (Strong duality) Let A be a convex subset of X, x′ ∈ S,
y′1 ∈ F1(x

′) and y′2 ∈ F2(x
′). Suppose that there exist z′1 ∈ G1(x

′) and
z′2 ∈ G2(x

′), with z′1−z′2 ∈ −L. Assume that for some (y∗, z∗) ∈ K+×L+, with
⟨y∗, e⟩ = 1, Eqs. (3.5) and (3.6) are satisfied at (x′, y′1, y

′
2, z

′
1, z

′
2, y

∗, z∗). Then
(x′, y′1, y

′
2, z

′
1, z

′
2, y

∗, z∗) is a feasible solution for (MWD). If the weak duality
Theorem 3.3 between (P) and (MWD) holds, then (x′, y′1, y

′
2, z

′
1, z

′
2, y

∗, z∗) is a
weak maximizer of (MWD).

Proof. As the Eqs. (3.5) and (3.6) are satisfied at (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗),

y∗T1 + z∗T2 ∈ ∂s(y
∗F1 + z∗G1)(x

′; ⟨y∗, y′1⟩+ ⟨z∗, z′1⟩),
∀T1 ∈ ∂sF2(x; y2), T2 ∈ ∂sG2(x; z2), x ∈ A, y2 ∈ F2(x) and z2 ∈ G2(x)

and

⟨z∗, z′1 − z′2⟩ = 0.

Hence, (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) is a feasible solution for (MWD).
Suppose that the weak duality Theorem 3.3 holds between (P) and (MWD) and
(x′, y′1, y

′
2, z

′
1, z

′
2, y

∗, z∗) is not a weak maximizer of (MWD).
Then, there exists a feasible point (x, y1, y2, z1, z2, y

∗
1 , z

∗
1) of (MWD), such that

(y′1 − y′2)− (y1 − y2) ∈ −int(K).

It contradicts the weak duality Theorem 3.3 between (P) and (MWD).
Consequently, (x′, y′1, y

′
2, z

′
1, z

′
2, y

∗, z∗) is a weak maximizer for (MWD). �

Theorem 3.5. (Converse duality) Let A be a convex subset of X, ρ2, ρ
′
2 ∈ R,

e2 ∈ int(K), e′2 ∈ int(L) and (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) be a feasible point of the
problem (MWD). Suppose that F2 : X → 2Y is ρ2-K-convex with respect to
e2 and G2 : X → 2Z is ρ′2-L-convex with respect to e′2, on A, satisfying (3.4). If
x′ ∈ S, then (x′, y′1 − y′2) is a weak minimizer of (P).
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Proof. We prove the theorem by the method of contradiction.
Suppose that (x′, y′ − y′2) is not a weak minimzer of the problem (P).
Then there exist x ∈ S and y ∈ F (x) such that

y1 − y2 − (y′1 − y′2) ∈ −int(K).

Therefore, ⟨
y∗, y1 − y2 − (y′1 − y′2)

⟩
< 0, as θY ∗ ̸= y∗ ∈ K+.

Again, since x ∈ S, (
G1(x)−G2(x)

)∩
(−L) ̸= ∅.

Let there exist z1 ∈ G1(x) and z2 ∈ G2(x) such that

z1 − z2 ∈
(
G1(x)−G2(x)

)∩
(−L).

So,

⟨z∗, z1 − z2⟩ ≤ 0.

From the constraints of (MWD), we have

⟨z∗, z′1 − z′2⟩ ≥ 0.

Therefore,⟨
z∗, z1 − z2 − (z′1 − z′2)

⟩
= ⟨z∗, z1 − z2⟩ − ⟨z∗, z′1 − z′2⟩ ≤ 0.

Hence, ⟨
y∗, y1 − y2 − (y′1 − y′2)

⟩
+
⟨
z∗, z1 − z2 − (z′1 − z′2)

⟩
< 0. (3.12)

As F2 : X → 2Y is ρ2-K-convex with respect to e2 and G2 : X → 2Z is ρ′2-L-
convex with respect to e′2, on A and T1 ∈ ∂sF2(x; y2) and T2 ∈ ∂sG2(x; z2),

F2(x
′)− y2 − T1(x

′ − x)− ρ2∥x′ − x∥2e2 ⊆ K

and

G2(x
′)− z2 − T2(x

′ − x)− ρ′2∥x′ − x∥2e′2 ⊆ L.

Therefore,

y′2 − y2 − T1(x
′ − x)− ρ2∥x′ − x∥2e2 ∈ K

and

z′2 − z2 − T2(x
′ − x)− ρ′2∥x′ − x∥2e′2 ∈ L.

Therefore,

⟨y∗, y′2 − y2⟩ − y∗T1(x
′ − x)− ρ2∥x′ − x∥2⟨y∗, e2⟩ ≥ 0

and

⟨z∗, z′2 − z2⟩ − z∗T2(x
′ − x)− ρ′2∥x′ − x∥2⟨z∗, e′2⟩ ≥ 0.

It follows that

⟨y∗, y′2 − y2⟩+ ⟨z∗, z′2 − z2⟩ − (y∗T1 + z∗T2)(x
′ − x)

≥ (ρ2⟨y∗, e2⟩+ ρ′2⟨z∗, e′2⟩)∥x′ − x∥2.
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From (3.4), we have

⟨y∗, y′2 − y2⟩+ ⟨z∗, z′2 − z2⟩ − (y∗T1 + z∗T2)(x
′ − x) ≥ 0. (3.13)

From the constraints of (MWD), we have

y∗T1 + z∗T2 ∈ ∂s(y
∗F1 + z∗G1)(x

′; ⟨y∗, y′1⟩+ ⟨z∗, z′1⟩).
Therefore,

⟨y∗, y′1⟩+ ⟨z∗, z′1⟩ − (y∗T1 + z∗T2)(x
′)

∈ min
∪
x∈A

(
(y∗F1 + z∗G1)(x)− (y∗T1 + z∗T2)(x)

)
.

Hence,
⟨y∗, y′1⟩+ ⟨z∗, z′1⟩ − (y∗T1 + z∗T2)(x

′)

≤ (y∗F1 + z∗G1)(x)− (y∗T1 + z∗T2)(x).

Since y1 ∈ F1(x) and z1 ∈ G1(x),

⟨y∗, y1 − y′1⟩+ ⟨z∗, z1 − z′1⟩ − (y∗T1 + z∗T2)(x− x′) ≥ 0. (3.14)

From (3.13) and (3.14), we have

⟨y∗, y1 − y′1⟩+ ⟨z∗, z1 − z′1⟩ −
(
⟨y∗, y2 − y′2⟩+ ⟨z∗, z2 − z′2⟩

)
≥ 0,

which contradicts (3.12). �

We also prove the duality results of Wolfe and mixed types for the set-valued
D.C. optimization problems (P). The proofs are almost same as the above, hence
omitted.

3.3. Wolfe type dual. Consider Wolfe type dual (WD) corresponding to
the problem (P). Assume that for any x ∈ A, y2 ∈ F2(x) and z2 ∈ G2(x),
∂sF2(x; y2) ̸= ∅ and ∂sG2(x; z2) ̸= ∅.
minimize

x∈A
y′1 − y′2 + ⟨z∗, z′1 − z′2⟩e, (WD)

subject to,

y∗T1 + z∗T2 ∈ ∂s(y
∗F1 + z∗G1)(x

′; ⟨y∗, y′1⟩+ ⟨z∗, z′1⟩),
∀T1 ∈ ∂sF2(x; y2), T2 ∈ ∂sG2(x; z2), x ∈ A, y2 ∈ F2(x) and z2 ∈ G2(x),

x′ ∈ A, y′1 ∈ F1(x
′), y′2 ∈ F2(x

′), z′1 ∈ G1(x
′), z′2 ∈ G2(x

′),

y∗ ∈ K+ \ {θY ∗}, z∗ ∈ L+ and ⟨y∗, e⟩ = 1.

A point (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) satisfying all the constraints of (WD) is called
a feasible point of the problem (WD).

Definition 3.3. A feasible point (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) of the problem (WD)
is said to be a weak maximizer of the problem (WD) if there exists no feasible
point (x, y1, y2, z1, z2, y

∗
1 , z

∗
1) of (WD) such that(

y1 − y2 + ⟨z∗1 , z1 − z2⟩e
)
−
(
y′1 − y′2 + ⟨z∗, z′1 − z′2⟩e

)
∈ int(K).
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Theorem 3.6. (Weak duality) Let A be a convex subset of X, ρ2, ρ
′
2 ∈ R,

e2 ∈ int(K) and e′2 ∈ int(L). Let x0 ∈ S and (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) be a
feasible point for the problem (WD). Suppose that F2 : X → 2Y is ρ2-K-
convex with respect to e2 and G2 : X → 2Z is ρ′2-L-convex with respect to e′2,
on A, satisfying (3.4).
Then,

F1(x0)− F2(x0)−
(
y′1 − y′2 + ⟨z∗, z′1 − z′2⟩e

)
⊆ Y \ −int(K).

Theorem 3.7. (Strong duality) Let A be a convex subset of X, x′ ∈ S, y′1 ∈
F1(x

′) and y′2 ∈ F2(x
′). Let there exist z′1 ∈ G1(x

′) and z′2 ∈ G2(x
′), with

z′1 − z′2 ∈ −L.
Assume that for some (y∗, z∗) ∈ K+ × L+, with ⟨y∗, e⟩ = 1, Eqs. (3.5) and
(3.6) are satisfied at (x′, y′1, y

′
2, z

′
1, z

′
2, y

∗, z∗). Then (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) is a
feasible solution for (WD). If the weak duality Theorem 3.6 between (P) and
(WD) holds, then (x′, y′1, y

′
2, z

′
1, z

′
2, y

∗, z∗) is a weak maximizer of (WD).

Theorem 3.8. (Converse duality) Let A be a convex subset of X, ρ2, ρ
′
2 ∈ R,

e2 ∈ int(K), e′2 ∈ int(L) and (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) be a feasible point of the
problem (WD), with

⟨z∗, z′1 − z′2⟩ ≥ 0.

Suppose that F2 : X → 2Y is ρ2-K-convex with respect to e2 and G2 : X → 2Z is
ρ′2-L-convex with respect to e′2, on A, satisfying (3.4). If x′ ∈ S, then (x′, y′1−y′2)
is a weak minimizer of (P).

3.4. Mixed type dual. Consider the mixed type dual (Mix D) corresponding
to the problem (P). Assume that for any x ∈ A, y2 ∈ F2(x) and z2 ∈ G2(x),
∂sF2(x; y2) ̸= ∅ and ∂sG2(x; z2) ̸= ∅.
minimize

x∈A
y′1 − y′2 + ⟨z∗, z′1 − z′2⟩e, (Mix D)

subject to,

y∗T1 + z∗T2 ∈ ∂s(y
∗F1 + z∗G1)(x

′; ⟨y∗, y′1⟩+ ⟨z∗, z′1⟩),
∀T1 ∈ ∂sF2(x; y2), T2 ∈ ∂sG2(x; z2), x ∈ A, y2 ∈ F2(x) and z2 ∈ G2(x),

⟨z∗, z′1 − z′2⟩ ≥ 0,

x′ ∈ A, y′1 ∈ F1(x
′), y′2 ∈ F2(x

′), z′1 ∈ G1(x
′), z′2 ∈ G2(x

′),

y∗ ∈ K+ \ {θY ∗}, z∗ ∈ L+ and ⟨y∗, e⟩ = 1.

A point (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) satisfying all the constraints of (Mix D) is called
a feasible point of the problem (Mix D).

Definition 3.4. A feasible point (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) of the problem (Mix D)
is said to be a weak maximizer of the problem (Mix D) if there exists no feasible
point (x, y1, y2, z1, z2, y

∗
1 , z

∗
1) of (Mix D) such that(

y1 − y2 + ⟨z∗1 , z1 − z2⟩e
)
−
(
y′1 − y′2 + ⟨z∗, z′1 − z′2⟩e

)
∈ int(K).
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Theorem 3.9. (Weak duality) Let A be a convex subset of X, ρ2, ρ
′
2 ∈ R,

e2 ∈ int(K) and e′2 ∈ int(L). Let x0 ∈ S and (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) be a
feasible point for the problem (Mix D). Suppose that F2 : X → 2Y is ρ2-K-
convex with respect to e2 and G2 : X → 2Z is ρ′2-L-convex with respect to e′2,
on A, satisfying (3.4).
Then,

F1(x0)− F2(x0)− (y′1 − y′2 + ⟨z∗, z′1 − z′2⟩e) ⊆ Y \ −int(K).

Theorem 3.10. (Strong duality) Let A be a convex subset of X, x′ ∈ S, y′1 ∈
F1(x

′) and y′2 ∈ F2(x
′). Let there exist z′1 ∈ G1(x

′) and z′2 ∈ G2(x
′), with z′1 −

z′2 ∈ −L. Assume that for some (y∗, z∗) ∈ K+×L+, with ⟨y∗, e⟩ = 1, Eqs. (3.5)
and (3.6) are satisfied at (x′, y′1, y

′
2, z

′
1, z

′
2, y

∗, z∗). Then (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) is
a feasible solution for (Mix D). If the weak duality Theorem 3.9 between (P) and
(Mix D) holds, then (x′, y′1, y

′
2, z

′
1, z

′
2, y

∗, z∗) is a weak maximizer of (Mix D).

Theorem 3.11. (Converse duality) Let A be a convex subset of X, ρ2, ρ
′
2 ∈ R,

e2 ∈ int(K), e′2 ∈ int(L) and (x′, y′1, y
′
2, z

′
1, z

′
2, y

∗, z∗) be a feasible point of the
problem (Mix D). Suppose that F2 : X → 2Y is ρ2-K-convex with respect to e2
and G2 : X → 2Z is ρ′2-L-convex with respect to e′2, on A, satisfying (3.4). If
x′ ∈ S, then (x′, y′1 − y′2) is a weak minimizer of (P).

4. Conclusions

In this paper, we establish the necessary and sufficient Karush-Kuhn-Tucker
(KKT) conditions for the set-valued D.C. optimization problem (P) under ρ-cone
convexity assumptions. We also prove the weak, strong and converse duality
results of various types for the problem (P). Our future plans include to study
the symmetric duals of the set-valued D. C. optimization problems, equilibrium
problems and variational inequality problems with respect to set-valued D.C.
maps under ρ-cone convexity assumptions.
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