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UNIQUENESS AND VALUE SHARING PROBLEMS IN CLASS

A OF MEROMORPHIC FUNCTIONS

HARINA P. WAGHAMORE∗ AND RAJESHWARI S.

Abstract. In this paper, we study the uniqueness and value sharing prob-
lems in class A of meromorphic functions. We obtain significant results

which improve as well as generalize the result of C.C Yang and Xinhou
Hua [10].
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1. Introduction

In this paper, a meromorphic function always means a function which is mero-
morphic in the whole complex plane. Let f(z) and g(z) be nonconstant meromor-
phic functions, a ∈ C. We say that f and g share the value a CM if f(z)−a and
g(z)−a have the same zeros with the same multiplicities. We shall use the stan-
dard notations of value distribution theory, T (r, f),m(r, f), N(r, f), N(r, f),...
(Hayman[14], Yang[18], Laine[16] and Navanlinna[17]). We denote by S(r, f)
any function satisfying S(r, f) = o{T (r, f)}, as r → +∞, possibly outside of
finite measure.
Let f(z) and g(z) are non-constant meromorphic functions and a be a finite
complex number. We denote by NL(r, f) the counting function for the poles of
both f and g about which f has larger multiplicity than g, where multiplicity is
not counted. Similarly, we have the notation for NL(r, g).
We denote by A the class of meromorphic functions f in C which satisfy the
condition N(r, f) + N(r, 1f ) = S(r, f). Clearly all functions in A are transcen-

dental meromorphic functions.
In 1920’s R. Nevanlinna[17] proved the following result (the Nevanlinna four
value theorem.)
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Theorem A. Let f and g be two nonconstant meromorphic functions. If f and
g share four distinct values CM, then f is a Mobius transformation of g.
For instance, f = ez, g = e−z share 0,±1,∞, and f = 1

g .

In 1997, Yang and Hua[10], obtained following result.
Theorem B. Let f and g be two non-constant meromorphic functions, n ≥ 11
an integer and a ∈ C − {0}. If fnf ′ and gng′ share the value a CM, then either
f = dg for some (n + 1)th root of unity d or g(z) = c1e

cz and f(z) = c2e
−cz,

where c, c1 and c2 are constants and satisfy (c1c2)
n+1c2 = −a2.

2. Some Lemmas

Lemma 2.1([6]). Let f be a meromorphic function of finite order and P a
homogeneous differential polynomial in f of degree n. If Θ(0, f) = Θ(∞, f) = 1,
then

T (r, p) ∼ nT (r, f).

Lemma 2.2 ([11]). Let fj(j = 1, 2, 3) be meromorphic functions that satisfy

3∑
j=1

fj = 1

Assume that f1 is not a constant, and

3∑
j=1

N2(r,
1

fj
) +

3∑
j=1

N̄(r, fj) < (λ+ 0(1))T (r), r ∈ I,

where λ < 1 , T (r) = max{T (r, f1), T (r, f2), T (r, f3)}, N2(r,
1
fj
) is the counting

function of zeros of fj(j = 1, 2, 3), where a multiple zero is counted two times
and a simple zero is counted once. Then f2 = 1 or f3 = 1.
Lemma 2.3([13]). Let f be a non-constant meromorphic function. Then

N(r,
1

f (k)
) ≤ N(r,

1

f
) + kN̄(r, f) + S(r, f).

where k is a positive integer.
Lemma 2.4([13]). Let F and G be two distinct non-constant meromorphic
functions, and let c be a complex number such that c ̸= 0, 1. If F and G share 1
and c IM, and if N̄(r, 1

F ) + N̄(r, F ) = S(r, F ) and N̄(r, 1
G ) + N̄(r,G) = S(r,G),

then F and G share 0, 1, c,∞ CM.
Lemma 2.5 ([17]). If f and g are distinct non-constant meromorphic functions
that share four values a1, a2, a3, a4 CM, then f is Mobius transformation of g:
two of the shared values, say a1 and a2 are picard exceptional values and the
cross ratio (a1, a2, a3, a4) = −1.
Lemma 2.6([13]). If f(z) ∈ A and k is a positive integer, then

T (r,
f (k)

f
) = S(r, f).
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Lemma 2.7([14]). Let f be a non-constant meromorphic functions and a1, a2, a3
be three distinct small meromorphic functions of f, then

T (r, f) ≤
3∑

j=1

N̄(r,
1

f − aj
) + S(r, f).

Lemma 2.8([14]). Suppose that f is a non-constant meromorphic function,
k ≥ 2 is an integer. If

N(r, f) +N(r,
1

f
) +N(r,

1

f (k)
) = S(r,

f ′

f
),

then f = eaz+b, where a ̸= 0, b are constants.
Following lemmas play a prominent role in improving our results.
Lemma 2.9. Let f, g ∈ A, n ≥ m + k + 1 and k be a positive integer. If
fn[P (f)](k) and gn[P (g)](k) share 1 CM, then

T (r, g) ≤
(
n+m− k

n−m− k

)
T (r, f) + S(r, g).

Proof. Let G = gn[P (g)](k). Then it is a polynomial of degree (n +m − k). By
lemma 2.1, we have

(n+m− k)T (r, g) ∼ T (r,G). (1)

Applying Lemma 2.7 to T (r,G), we get

(n+m− k)T (r, g) ≤ N(r,G) +N(r,
1

G
) +N(r,

1

G− 1
) + S(r,G)

= N(r, gn[P (g)](k)) +N

(
r,

1

gn[P (g)](k)

)
+N

(
r,

1

gn[P (g)](k) − 1

)
+ S(r, gn[P (g)](k))

Noting that

N(r, gn[P (g)](k)) ≤ N(r, gn) +N(r, [P (g)](k))

≤ N(r, g) +mN(r, g) + kN(r, g)

= mN(r, g) + (k + 1)N(r, g)

and S(r,G) = S(r, g), (by(2.1))

So,

(n+m− k)T (r, g) ≤ mN(r, g) + (k + 1)N(r, g) +N(r,
1

g
)

+N(r,
1

[P (g)](k)
) +N(r,

1

gn[P (g)](k) − 1
) + S(r, g)
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Since fn[P (f)](k) and gn[P (g)](k) share 1 CM, it implies that fn[P (f)](k) − 1
and gn[P (g)](k) − 1 have same zeros with same multiplicities, using this with
Lemma 2.3, we obtain that

(n+m− k)T (r, g) ≤ mN(r, g) + (k + 1)N(r, g) +N(r,
1

g
) +mN(r,

1

g
)

+ kN(r, g) +N(r,
1

fn[P (f)](k) − 1
) + S(r, g)

(2)

By hypothesis, we have

N(r, f) +N(r,
1

f
) = S(r, f),

N(r, g) +N(r,
1

g
) = S(r, g).

Using Nevanlinna’s first fundamental theorem and Lemma 2.1, we have

N(r,
1

fn[P (f)](k) − 1
) ≤ T (r,

1

fn[P (f)](k) − 1
)

= T (r, fn[P (f)](k)) +O(1).

∼ (n+m− k)T (r, f) +O(1).

So,

N(r,
1

fn[P (f)](k) − 1
) ≤ (n+m− k)T (r, f) +O(1). (3)

using (3), (2) becomes

(n+m− k)T (r, g) ≤ mN(r, g) +mN(r,
1

g
) + (n+m− k)T (r, f) + S(r, g).

≤ 2mT (r, g) + (n+m− k)T (r, f) + S(r, g)

(n−m− k)T (r, g) ≤ (n+m− k)T (r, f) + S(r, g)

T (r, g) ≤ (
n+m− k

n−m− k
)T (r, f) + S(r, g).

This completes the proof of Lemma. �

Lemma 2.10. Let f, g ∈ A, n ≥ m + 1 and k be a positive integer. If
fn[P (f)]k and gn[P (g)]k share 1 CM, then S(r, f) = S(r, g).

Proof. Proceeding as in the proof of Lemma 2.9, we have

T (r, g) ≤ (
n+m− k

n−m− k
)T (r, f) + S(r, g).

Similarly, we have

T (r, f) ≤ (
n+m− k

n−m− k
)T (r, g) + S(r, f)
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using above two inequalities we easily obtain

S(r, f) = S(r, g).

This completes the proof of Lemma. �
Lemma 2.11. Let f, g ∈ A, n ≥ m + 1 and k be a positive integer. If

fn[P (f)](k)gn[P (g)](k) = 1, then f = c3e
pz and g = c4e

−pz where c3, c4 and p
are constants such that (−1)k(c3c4)

n+1p2k = 1.

Proof. Let
F = fn[P (f)](k) andG = gn[P (g)](k) (4)

By Lemma 2.1, we have

T (r, F ) ∼ (n+m− k)T (r, f),

T (r,G) ∼ (n+m− k)T (r, g)

clearly S(r, F ) = S(r, f)andS(r,G) = S(r, g). By Lemma 2.10, we have

S(r, f) = S(r, g).

Thus
S(r, F ) = S(r, f) = S(r, g) = S(r,G). (5)

By hypothesis, we have

fn[P (f)](k)gn[P (g)](k) = 1 or FG = 1. (6)

From 6 and f and g are transcendental functions, it follows that

N(r,
1

f
) = 0 and N(r,

1

g
) = 0 (7)

By hypothesis, we have

N̄(r, f) + N̄(r,
1

f
) = S(r, f)

N̄(r, g) + N̄(r,
1

g
) = S(r, g)

(8)

(6) can be expressed as

fn[P (f)](k) =
1

gn[P (g)](k)

So we deduce that

N(r, fn[P (f)](k)) = N

(
r,

1

gn[P (g)](k)

)
(9)

Using (8), we get

N(r, fn[P (f)](k)) = N(r, fn) +N(r, [P (f)](k))

= nN(r, f) +mN(r, f) + kN̄(r, f)

= (n+m)N(r, f) + kN̄(r, f)

= (n+m)N(r, f) + S(r, f)
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Using this with Lemma 2.3 with (5), (7) and (8), (9) can be written as

(n+m)N(r, f) + S(r, f) ≤ N(r,
1

gn
) +N

(
r,

1

[P (g)](k)

)
≤ (n+m)N(r,

1

g
) + kN̄(r, g) + S(r, g)

= S(r, g).

which implies that

N(r, f) = S(r, f). (10)

Similarly

N(r, g) = S(r, g). (11)

By (7), (8) and Lemma 2.3, we have

N̄(r,
1

F
) = N̄

(
r,

1

fn[P (f)](k)

)
≤ N̄(r,

1

f
) +N

(
r,

1

[P (f)](k)

)
≤ N̄(r,

1

f
) +mN(r,

1

f
) + kN̄(r,

1

f
) + S(r, f)

= S(r, f)

Therefore

N̄(r,
1

F
) = S(r, F ) (12)

Similarly

N̄(r,
1

G
) = S(r,G) (13)

Moreover by using (8) and (10), we have

N̄(r, F ) =N̄(r, fn[P (f)](k))

≤ N̄(r, f) +N(r, [P (f)](k))

≤ N̄(r, f) +mN(r, f) + kN̄(r, f)

= S(r, f).

Therefore

N̄(r, F ) = S(r, F ) (14)

Similarly

N̄(r,G) = S(r,G) (15)

It follows from (12)-(15) that

N̄(r,
1

F
) + N̄(r, F ) = S(r, F ),

N̄(r,
1

G
) + N̄(r,G) = S(r,G).

(16)
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In view of (6), we know that F and G share 1 and -1 IM, together this with (16)
and Lemma 2.4 implies that F and G share 1,−1, 0,∞ CM, thus by Lemma 2.5,
we get that 0 and ∞ are picard values of F and G. Thus we deduce from (4)
that both f and g are transcendental entire functions. By (7) we have

f(z) = eα(z),

g(z) = eβ(z)
(17)

where α(z) and β(z) are non constant entire functions.

Then T (r, f
′

f ) = T (r, e
αα′

eα ) = T (r, α′). We claim that α(z) + β(z) = c, c is a
constant.
From (17), we know that either α and β are transcendental functions or both α
and β are polynomials.
From (6), we have

N(r,
1

[P (f)](k)
) = N(r, gn[P (g)](k)fn)

≤ nN(r, g) +N(r, [P (g)](k)) + nN(r, f)

= 0.

From this and (6), we get

N(r, f) +N(r,
1

f
) +N(r,

1

f (k)
) = 0.

If k ≥ 2, suppose that α is a transcendental entire function. From Lemma 2.7,
we have f = eα(z) = eaz+b, it implies that α(z) = az+ b, a polynomial, which is
a contradiction.
Thus α and β polynomials.
We deduce from (17) that

[P (f)](k) = [(α′)k + P(k−1)(α′)]p(e
α).

[P (g)](k) = [(β′)k +Q(k−1)(β′)]p(e
β).

where P(k−1)(α′) and Q(k−1)(β′) are differential polynomials in α′ and β′ of degree
at most (k − 1) respectively. Thus by (6) we obtain that

[(α′)k + P(k−1)(α′)][(β
′)k +Q(k−1)(β′)]p(e

(n+m−k)(α+β)) = 1 (18)

we deduce from (18) that α(z) + β(z) = c, c is a constant.
If k = 1, from (17) we get,

(α′)(β′)p(e(n+m−k)(α+β)) = 1. (19)
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Let α + β = γ. If α and β are transcendental entire functions, then γ is not a
constant and (19) implies that

(α′)(γ′ − α′)p(e(n+m−k)γ) = 1. (20)

Since

T (r, γ′) = m(r, γ′)

= m(r,
p(e(n+m−k)γ′

)

p(e(n+m−k)γ
)γ′)

= m(r,
(p(e(n+m−k)γ))′

p(e(n+m−k)γ)
) = S(r, p(e(n+m−k)γ))

Thus (20) implies that Since

T (r, p(e(n+m−k)γ)) = T (r,
1

(α′)(γ′ − α′)
)

≤ T (r, (α′)(γ′ − α′)) +O(1)

≤ 2T (r, α′) + S(r, p(e(n+m−k)γ)).

Which implies that

T (r, p(e(n+m−k)γ)) = O(T (r, α′)).

Thus T (r, γ′) = S(r, α′). In view of (20) and by Lemma 2.7, we get

T (r, α′) ≤ N̄(r, α′) + N̄(r,
1

α′ ) + N̄(r,
1

α′ − γ′)
) + S(r, α′).

Since α and β are transcendental entire function and in view of (20), we obtain
T (r, α′) ≤ S(r, α′) and this implies that α′ is a constant, which is a contradiction.
Thus α and β are both polynomials and α(z) + β(z) = c, for a constant c.
Hence from (18), we get

(α′)2k = 1 + P(2k−1)(α
′) (21)

where P(2k−1)(α
′) is differential polynomial in α′ From (21), we have

2kT (r, α′) = T (r, (α′)2k) = m(r, (α′)2k)

≤ m(r, P(2k−1)(α
′)) +O(1)

= m(r,
P(2k−1)(α

′)

(α′)2k−1
(α′)2k−1) +O(1)

≤ m(r,
P(2k−1)(α

′)

(α′)2k−1
) +m(r, (α′)2k−1) +O(1)

≤ (2k − 1)T (r, α′) + S(r, α′)

Therefore T (r, α′) ≤ S(r, α′), which implies that α′ is a constant. Thus α =
pz + c1, β = −pz + c2. By (17), we represent f and g as
f = c3e

pz g = c4e
−pz.
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Where c3, c4 and p are constants such that (−1)k(c3c4)
n+1p2k = 1.

This completes the proof of Lemma. �

3. Main Results

The Theorem B motivate us to think that, whether there exists a similar
result, if fnf ′ is replaced in Theorem B by fn[P (f)](k). In this paper, we prove
significant result which improves as well as generalize Theorem B in class A.
Theorem 1. If f, g ∈ A, n ≥ m + k + 1 and k be a positive integer. Then
fn[P (f)](k) = 1 has infinitely many zeros.

Proof. Let F = fn[P (f)](k). By Lemma 2.1 and 2.6, we have

(n+m− k)T (r, f) ∼ T (r, fn[P (f)](k))

≤ N(r, fn[P (f)](k)) +N(r,
1

fn[P (f)](k)
)

+N(r,
1

fn[P (f)](k) − 1
) + S(r, fn[P (f)](k))

(22)

Noting that

N(r, fn[P (f)](k)) ≤ N(r, fn) +N(r, [P (f)](k))

≤ N(r, f) +mN(r, f) + kN(r, f)

≤ mN(r, f) + (k + 1)N(r, f)

N(r,
1

fn[P (f)](k)
) ≤ N(r,

1

fn
) +N(r,

1

[P (f)](k)
)

≤ N(r,
1

f
) +N(r,

1

fn[P (f)](k)
)

and (n+m− k)T (r, f) ∼ T (r, fn[P (f)](k)). So S(r, fn[P (f)](k)) = S(r, f),
substituting above inequalities in (22), we obtain,

(n+m− k)T (r, f) ≤ mN(r, f) + (k + 1)N(r, f) +N(r,
1

f
) +N(r,

1

[P (f)](k)
)

+N(r,
1

fn[P (f)](k) − 1
) + S(r, f)

using Lemma 2.3, we get,

(n+m− k)T (r, f) ≤ mN(r, f) + (k + 1)N(r, f) +N(r,
1

f
) +mN(r,

1

f
)

+ kN(r, f) +N(r,
1

fn[P (f)](k) − 1
) + S(r, f).

(23)
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By hypothesis, we have N(r, f) = S(r, f), N(r, 1f ) = S(r, f)

Therefore (23) becomes,

(n+m− k)T (r, f) ≤ mN(r, f) +mN(r,
1

f
) +N(r,

1

fn[P (f)](k) − 1
) + S(r, f)

≤ 2mT (r, f) +N(r,
1

fn[P (f)](k) − 1
) + S(r, f)

(n−m− k)T (r, f) ≤ N(r,
1

fn[P (f)](k) − 1
) + S(r, f)

which implies that fn[P (f)](k) − 1 has infinitely many zeros for n ≥ m+ k + 1.
This completes the proof of Theorem 1. �

Theorem 2. Let f, g ∈ A, n ≥ m + k + 4 and k be a positive integer. If
fn[P (f)](k) and gn[P (g)](k) share 1 CM, then either f ≡ tg for a constant t such
that tn+1 = 1 or f(z) = c3e

pz, g(z) = c4e
−pz where c3, c4 and p are constants

such that (−1)(k)(c3c4)
n+1p2k = 1.

Proof. By hypothesis, fn[P (f)](k) and gn[P (g)](k) share 1 CM. Let

H(z) =
fn[P (f)](k) − 1

gn[P (g)](k) − 1
(24)

Then H(z) is a meromorphic function satisfying T (r,H) = O(T (r, f) + T (r, g)),
by the first fundamental theorem and Lemma 2.1.
From (24), we see that the zeros and poles of H(z) are multiple and satisfy

N̄(r,H) ≤ N̄L(r, f)

N̄(r,
1

H
) ≤ N̄L(r, g)

(25)

Let

f1 = fn[P (f)](k)

f2 = −Hgn[P (g)(k)], f3 = H
(26)

then by using (24), we easily see that

f1 + f2 + f3 = fn[P (f)](k) −Hgn[P (g)](k) +H

= fn[P (f)](k) −H[gn[P (g)](k) − 1]

= fn[P (f)](k) −
(
fn[P (f)](k) − 1

gn[P (g)](k) − 1

)
[gn[P (g)](k) − 1]

= 1.
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Assuming that f1 is non-constant and by Lemma 2.2, we have

3∑
j=1

N2(r,
1

fj
) +

3∑
j=1

N̄(r, fj)

= N2(r,
1

f1
) +N2(r,

1

f2
) +N2(r,

1

f3
) + N̄(r, f1)

+ N̄(r, f2) + N̄(r, f3)

≤ N2(r,
1

fn[P (f)](k)
) +N2(r,

1

gn[P (g)](k)
) +N2(r,

1

H
)

+ N̄(r, fn[P (f)](k)) + N̄(r, gn[P (g)](k)) + N̄(r,H).

(27)

Noting that

N̄(r, fn[P (f)](k)) ≤ mN(r, f) + (k + 1)N̄(r, f)

N̄(r, gn[P (f)](k)) ≤ mN(r, g) + (k + 1)N̄(r, g)

using this with (25) and Lemma 2.3, (27) becomes

3∑
j=1

N2(r,
1

fj
) +

3∑
j=1

N̄(r, fj)

= 2N̄(r,
1

f
) +N(r,

1

[P (f)](k)
)

+ 2N̄(r,
1

g
) +N(r,

1

[P (g)](k)
+ (k + 1)N̄(r, f) +mN(r, g)

+ (k + 1)N̄(r, g) + N̄(r,H)

≤ 2N̄(r,
1

f
) +mN(r,

1

f
) + kN̄(r, f)

+ 2N̄(r,
1

g
) +mN(r,

1

g
) + kN̄(r, g) + 2N̄L(r, g)

+mN(r, f) + (k + 1)N̄(r, f) +mN(r, g) + (k + 1)N̄(r, g)

+ N̄L(r, f) + S(r, f) + S(r, g)

= 2(N̄(r,
1

f
) + N̄(r,

1

g
)) +m(N(r,

1

f
) +N(r,

1

g
))

+ (2k + 1)(N̄(r, f) + N̄(r, g)) +m(N(r, f) +N(r, g))

+ 2N̄L(r, g) + N̄L(r, f) + S(r, f) + S(r, g).

(28)

Since f, g ∈ A, we have N̄(r, f) + N̄(r, 1f ) = S(r, f)

N̄(r, g) + N̄(r, 1g ) = S(r, g)
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Therefore
3∑

j=1

N2(r,
1

fj
) +

3∑
j=1

N̄(r, fj)

≤ m(N(r,
1

f
) +N(r,

1

g
)) +m(N(r, f) +N(r, g)) + 2N̄L(r, g)

+ N̄L(r, f) + S(r, f) + S(r, g)

(29)

Noting that
2N̄L(r, g) + N̄L(r, f) ≤ 2N̄(r, f) = S(r, f)

or
2N̄L(r, g) + N̄L(r, f) ≤ 2N̄(r, g) = S(r, g).

Thus (29) becomes

3∑
j=1

N2(r,
1

fj
) +

3∑
j=1

N̄(r, fj) ≤ 2m(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

for m = 1, using Lemma 2.9 and 2.10, we get

3∑
j=1

N2(r,
1

fj
) +

3∑
j=1

N̄(r, fj) ≤ 2mT (r, f) + 2m
(n+m− k)

(n−m− k)
T (r, f) + S(r, f)

=

[
2m+ 2m(

n+m− k

n−m− k
)

]
T (r, f) + S(r, f)

= 2m

[
1 +

n+m− k

n−m− k

]
T (r, f) + S(r, f)

= 2m

[
n−m− k + n+m− k

n−m− k

]
T (r, f) + S(r, f)

=
4m(n− k)

n−m− k
T (r, f) + S(r, f)

≤ 4m(n− k)

(n−m− k)(n+m− k)
T (r) + S(r, f)

≤
(

4m(n− k)

(n−m− k)(n+m− k)
+O(1)

)
T (r).

Since n ≥ m + k + 4, 4m(n−k)
(n−m−1)(n+m−1) < 1, using Lemma 2.2, we get f2 = 1 or

f3 = 1. Next we consider two cases:
Case 1. f2 = 1 i.e., −Hgn[P (g)](k) = 1 using (24) we have

fn[P (f)](k) − 1

gn[P (g)](k) − 1
gn[P (g)](k) = 1

by simple computing, we get

fn[P (g)](k)gn[P (g)](k) = 1.
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By Lemma 2.11, we get the conclusion of Theorem 2.
Case 2. f3 = 1 i.e., H = 1 using (24), we have

fn[P (f)](k) − 1

gn[P (g)](k) − 1
= 1

i.e.,

fn[P (f)](k) = gn[P (g)](k). (30)

By Lemma 2.1, we have

T (r, fn[P (f)](k)) = T (r, gn[P (g)](k))

(n+m)T (r, f) = (n+m)T (r, g)

T (r, f) = T (r, g) (31)

and also

S(r, f) = S(r, g). (32)

Let h = g
f . Then by (30), we have

hn =
[P (f)](k)

[P (g)](k)
,

h(n+1) =
g[P (f)](k)

f [P (g)](k)
.

Suppose that h is not a constant.
By (31), we have

T (r, h) = T (r,
g

f
)

≤ T (r, g) + T (r, f) +O(1)

≤ 2T (r, f) +O(1).

Which implies that

S(r, h) = S(r, f).

Similarly

S(r, h) = S(r, g).

Thus, by (32)

S(r, h) = S(r, f) = S(r, g).
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By the first fundamental theorem and Lemma 2.6, we have

T (r, h(n+1)) = T

(
r,
g[P (f)](k)

f [P (g)](k)

)
(n+ 1)T (r, h) ≤ T (r,

[P (f)](k)

f
) + T (r,

g

[P (g)](k)
) +O(1)

= T (r,
[P (f)](k)

f
) + T (r,

[P (g)](k)

g
) +O(1)

= S(r, f) + S(r, g)

= S(r, h).

Which is a contradiction since n ≥ m+ k + 4. Therefore h is a constant. Since
f and g are transcendental meromorphic functions, we have h ̸= 0.
Let t = 1

h , which implies that f = tg, From (30), we obtain tn+1 = 1. This
completes the proof of the Theorem 2. �
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