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REMARKS ON THE INNER POWER OF GRAPHS'

S. JAFARI, A.R. ASHRAFI, G.H. FATH-TABAR AND M. TAVAKOLI*

ABSTRACT. Let G be a graph and k is a positive integer. Hammack and
Livesay in [The inner power of a graph, Ars Math. Contemp., 3 (2010),
no. 2, 193-199] introduced a new graph operation G®) | called the ktP
inner power of G. In this paper, it is proved that if G is bipartite then G(2)
has exactly three components such that one of them is bipartite and two
others are isomorphic. As a consequence the edge frustration index of G(2)
is computed based on the same values as for the original graph G. We also
compute the first and second Zagreb indices and coindices of G(2).
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1. Introduction

All graphs in this paper are finite without multiple edges. A graph invariant
is any function on a graph that does not depend on a labeling of its vertices. If
a graph invariant has application in chemistry, it is called topological index.
Some of these topological indices are defined by graph distance and some others
by vertex degrees and so on. Among degree—based topological indices two that
are known as first and second Zagreb indices are the subject of numerous papers
in the chemical literature [4, 9, 10, 13].

Let G be a graph with vertex and edge sets V(G) and E(G), respectively.
For every vertex u € V(G), the edge connecting u and v is denoted by uv and
dega(u) denotes the degree of u in G. We will omit the subscript G when the
graph is clear from the context.

Received Febuary 5, 2016. Revised November 14, 2016. Accepted November 17, 2016.
*Corresponding author.

TThe research of the second author is partially supported by the University of Kashan under
grant no 364988/12, and, The research of the third author is partially supported by the University
of Kashan under grant no 572763/11.

© 2017 Korean SIGCAM and KSCAM.

25



26 S. Jafari, A. R. Ashrafi, G. H. Fath—Tabar and M. Tavakoli

The first and second Zagreb indices were originally defined as M;(G) =
> ouev(@) deg(u)? and Ms(G) = > wveB(c) deg(u)deg(v), respectively. The first
Zagreb index can be also expressed as a sum over edges of G [10],

Mi(G) = ) [deg(u) +deg(v)].

weE(G)

The readers interested in more information on Zagreb indices can be referred to
(2,4, 7,9, 10, 11] and references therein. The first and second Zagreb coindices
of a graph G are defined as M (G) = > wwgr(c)ldeg(u) +deg(v)] and My (G) =
>wwgB(c) deg(u)deg(v), respectively.

We now state the exact definition of graph power. Given a graph G, and a
positive integer k, the k" inner power of G is the graph G*) defined as follows:

V(GH®) = {(wo,21,-- 2k 1) | 2 € V(G) for 0 <i <k},

E(G(k)) = {(xO,:L‘la"' axkfl)(y(%ylf" 7yk71) |
xyi+1 € E(GQ) for 0 <i <k},

where arithmetic on the indices is done modulo & [5].

A graph G with vertex set V(G) is bipartite if V/(G) can be partitioned into
two subsets V7 and V5 such that all edges have one endpoint in V; and the other
in V5. The smallest number of edges that have to be deleted from a graph to
obtain a bipartite spanning subgraph is called the bipartite edge frustration of
G and denoted by ¢(G) [3]. It is easy to see that G is bipartite if and only if
o(G) =0.

A graph G is called (n, m)—graph, if it has n vertices and m edges. Through-
out this paper our notation is standard. For terms and concepts not defined
here we refer the reader to any of several standard monographs such as, e.g., [6]
or [8].

2. Main results

In this section some new mathematical properties of the inner power of graphs
are obtained. We begin by computing some topological indices of this new
proposed graph operation.

2.1. The Components of G, In this section it is proved that G®) has
exactly three components such that one of them is bipartite and two others are
isomorphic. We first calculate the number of edges of this graph.

Lemma 2.1. Suppose G is a simple (n,m)—graph and (z,y) € G®. Then
deg(x,y) = deg(x).deg(y) and GP is an (n?,2m? + m)—graph containing 2m
loops.
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Proof. Suppose z1, ..., x, and y1, ..., Yy, are adjacent vertices of = and y, respec-
tively. Then adjacent vertices of (z,y) are as follows:

(y1,$1),~~~ 7(ym7$1)7
(y1,$2),'-- 7(ym7x2)7
(ylaxn)a e 7(y7n7xn)-

Therefore, deg(z,y) = deg(x).deg(y). If uv € E(G) then (u, v)(u,v), (v,u)(v,u) €
E(G®) and so for each edge in G we have two loops in G(?). On the other hand,
if uv ¢ F(G) then there is not a loop in G containing (u,v). Therefore, G(2)
has exactly 2m loops. Finally, |[E(G®)| = %Z(w’y)ev(a(‘z)) deg(z,y) + m =
2m? + m, as desired. O

Theorem 2.2. If G is bipartite and connected then G2 has exactly three com-
ponents such that one of them is bipartite and two others are isomorphic.

Proof. Suppose z,z;,z;+1 € V(G) and z;2;41 € E(G). We prove that there

are no paths connecting (x, z) to (z;,z;+1), (z,2) to (z;41, ;) and (z;,x;41) to
(Tit1, i)

(i). There exists a path (z, ) (@, 2;,) - (@i, Tj, ) (Tiy Tig1) in GP) connect-

ing (x,x) to (z;,x;4+1). We consider two cases that k is even or odd. We

first assume that k = 2n. Thus,
C 1 XTj, Xy Tjy - Tiy, Tit1TiTyy, - TigTjp Ty @ is an odd cycle in G
which is  impossible. If k = 2n + 1, then
, . .
C' 0 TXj Ty Ty T, iy 104y, - Tiy T4, T3, T 18 a odd cycle in

G, leads to another contradiction.
(ii). There exists a path

(@, 2)(Tiy, Tiy) * (Tiny_y > Tin,, ) (Tig 1, Ti)

in G® connecting (x,x) to (xi11,2;). In this case, a similar argument
as (1) leads to contradiction.
(iii). There exists a path

(@i, i 1) (@iy, jy) - (Ti s Ty ) (Tig, Th)

in G® connecting (z;, Ziy1) to (@41, 2;). We consider two cases that k
is even or odd. We first assume that £ = 2n. Then the sequence

(@i it 1) (Tiy, Tjy) -+ (T, T ) (i1, Ti)
is a path in G(?). Thus,

Liljy LigLjg ** " Lig, Li
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is a cycle of length 2n + 1 in G which is impossible. If & = 2n + 1

then z;xj, 24,25, - Tj,, , Tit1T; is a cycle in G of length 2n + 3, leads

to another contradiction.
This shows that G has at least 3 components. The components of G(?)
containing (x,x), (x;,2;+1) and (z;41,2;) are denoted by A, B and C, re-
spectively. Assume that (a,b) is an arbitrary vertex of G®?). If b = a then
(a,b) € A and if @ and b are adjacent in G then (a,b) € BUC. If a and
b are not adjacent in G then there is a path P : axjxs---x,.b connecting a
to b. If r is even then (a,b)(w,,z1)(z2,7r—1) - (2z,7z) is a path in G®
connecting (a,b) to (rz,rz). Since (rz,rz) € A, (a,b) € A. If 7 is odd
then (a, b)(z,, 1) (T2, Tr_1) - (:L'%,x%l) is a path in G connecting (a,b) to
(.CL'%I,.’E#) Since (x%l,a:#) € BUC, (a,b) € BUC. This proves that G(?)
has exactly three components.

We claim that A is bipartite and B and C' are isomorphic. Suppose A has an
odd cycle, say (z,z) (z1,y1) (¥2,Y2) -+ (%20, Y2n) (z,%). Then zz1ysws - yonz
is an odd cycle in G which is impossible. Thus, A is bipartite. Finally, B =
{(a,b) | (b,a) € C} and so B and C are isomorphic. This completes the proof.

O

2.2. Computing Some Topological Indices of G(?). The aim of this section
is to compute exact formulas for the edge frustration index, the first and second
Zagreb indices and the first and second Zagreb coindices of G(?). The degree of
a vertex (u,v) in G is defined as the number of loops and the number of edges
incident to (u,v).

Theorem 2.3. ¢ (G®) = 1 (M, (G) — 4m +n — k), where k is the number of
vertices of odd degrees.

Proof. 1t is easy to see that the edge and vertex frustration indices of a given
graph G is the summation of this number in each component of G. Apply
Theorem 1 to prove that ¢ (G(Q)) = 2p(B), where B is one of the components of
G® introduced in the proof of Theorem 1. Suppose V(G) = {z1,--- ,z,}, where
x1,- -+ ,x have odd degree, xjy1, -+ ,x, have even degree and n; = deg(x;).
Therefore,

12 (G(Q)) = 2 <Z im (ni —2)+ Z i (ni — 1)2>
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(M, (G) —4dm+n—k),

N | =

as desired. O

Theorem 2.4. M, (G(z)) = (M (G))2.
Proof. By Lemma 1 and definition, we have:

M) =Y degtu)

(u,v)EV(G(z))

Y. (deg(u)deg (v))?

u,veV(G)

= Y deg(u)’deg(v)?

u,veEV(G)

= Z Z deg (u)* deg (v)?

wEV(G) veV(G)

= > deg(u)® > deg(v)?
ueV(G) veV(G)

= M (G) M (G) = (M (G))?,

proving the result. O
Theorem 2.5. My(G?) =2 (My(G))* — 2 wweB(G) deg(u)?deg(v)?.

Proof. Suppose (u,v) and (u/,v') are adjacent vertices of G(?) then vu', uv’ €
E(G) and (v,u), (v/,) are adjacent in G®). Therefore,

My(G?) = Z deg(u, v)deg(u',v")
(u,v)(u! v )EE(G(2)
= 2 Z deg(u)deg(v)deg(u')deg(v') — Z deg(u)?deg(v)?
uwv’ €E(G),vu’ €E(G) weE(G)
= 2 Z deg(u)deg(v') Z deg(u')deg(v) — Z deg(u)?deg(v)?
uwv’ €E(G) uw/'veEE(G) uwveE(G)
= 2(M2(G@)° = Y deg(u)’deg(v)®.
uwveE(G)
This completes our argument. O

Theorem 2.6. M;(G®?) = 4m2(n? — 1) 4+ 2My(G) — (M1(G))>.
Proof. By definition, M;(G®)) 4+ M(G?) is equal to:

> [deg(z,y) + deg(z, "))
(2,9) (2" y ) EB(G®)
+ > [deg(z,y) + deg(z’, "))

(zy) (=" ¥ )¢ E(GP)



30 S. Jafari, A. R. Ashrafi, G. H. Fath—Tabar and M. Tavakoli

= > [deg(z,y) + deg(z’,y")]
{(29),(" y)}EV(G®)

_ 9 Z deg(z,y) + 2 Z deg(z,y)

(@,9)eV(G®) Ty B(G)
1 roo 2
= 3 Y. ldegla,y) +deg(a’,y)] - 4m® +2Ma(G)
(z,y),(2",y)EV(GP)
1
- 3 > deg(z,y) + > deg(z',y')
(.9),(2",y)EV (GD) (@.9),(2",y)EV (GD)
— 4m?® +2M5(G)
1
= X 2 Z deg(z,y) — 4m?* + 2Ms(Q)

(z,y),(z'y)EV(G?)

= V(@) > deg(x,y) —4m® + 2M,(G)
(z,9)eV(G?@)

= n? Z deg(z)deg(y) | —4m? + 2My(G)
zyeV(G)

= 4n®m? — 4m? + 2M,(G).
Apply Theorem 3, to complete our argument. O

Theorem 2.7. M, (G?) = Y eyen(c) deg (z)* deg (y)* + 8m* — 3 (M (@))*
— 2 (M (G))*.

Proof. By definition of prime power,

M (G@)) + M (G<2)) = > deg (z,y) deg (z',y)
(@)@ y")eB(G?)

> deg (z,y) deg (¢, y')

(@)@ y" )2 B(G?)

1
= 3 > deg (z,y) deg (z',y)
(z,y) (2" y)ev(a®)

_ Z deg (x,y) deg (z,y)

(z,y)eV(G@)

=5 Y gy Y deg(y)

(zy)ev(GA) (' ,y)ev(G™)

_|_

(M1 (G))

N = N =

><4><m2><4><mQ—%(M1(G))2



Remarks on the Inner Power of Graphs 31

- 8><m4—%(M1(G))2.

Apply Theorem 4 to complete our proof. O
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