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Abstract

This system is a diagnosis system that checks whether it causes a partial discharge of a power cable or not.

PD(Partial Discharge) is detected by FBDS(Frequency Band Detection Sensor). That is, it means a acoustic sensor capable
of detecting each frequency band. The wave shape of PD sound is similar to noise and is systematically generated by
partial discharge. Therefore, in this paper, we could discriminate between normal and abnormal case using relative level
crossing rate(RLCR) and spectrogram of frequency energy rate.

Keywords :

I. Introduction

Currently, the need for the electric power supply
with 765(KV) of power transmission voltage and high
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reliability is increasing. Accordingly, error diagnosis
that detects abnormal conditions in electric ower
equipment to prevent accident and disability becomes
more important.

For diagnosis methods for modern power equipment,
chemical detection via gas analysis, mechanical
detection via ultrasound measure or vibration measurement,
RF measurement for detecting partial discharge, and
electrical detection such as UHF measurement method
are suggested.HNZ]

In this study, it offers a FBDS developed to detect
partial discharge of power cable. By applying this
sensor, it analyzes partial discharge data in the

domain of time and frequency.
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II. Detection of PD signal by FBDS

1. FBDS(Frequency Band Detection Sensor)

Partial discharge in HV/MV insulation can be
considered to take two forms, surface partial
internal partial discharge. When

surface partial discharge is present, tracking occurs

discharge and

across the surface of the insulation which is
exacerbated by airborne contamination and moisture
leading to erosion of the insulation. Internal partial
bulk of

materials and is caused by age, poor materials or
[3~5]

discharge occurs within the insulation
poor quality manufacturing processes.

Thus, this study offers a FBDS to measure partial
discharge of power cable and analyze, diagnose the
data collected from it. Fig. 1 displays the diagram of
the FBDS. The reason for the multiple band antenna
is that the frequency range variations(20, 100, 1000
MHz).
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Block Diagram of FBDS.

FBDS detects abnormal signal sound generated
from the power cable, and it detects discharge
frequency induced by electric field. The electric field
generated by partial discharge is very high. Thus,
this study offers a sensor to measure partial
discharge of power cable and analyze, diagnose the
data collected from it. Fig. 2 displays the diagram of
acoustic sensor.

In order to detect abnormal condition inside of
power cable, it consists of frequency band sensor to
collect data.

Frequency band sensor detects resonance frequency
(Colpitts Tank Circuit) of the PD from the 3 antennas
induced by electric field. Three antennas have the
three frequency bands(20~100(MHz), 100~500(MHz),
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Block diagram of Acoustic Sensor.

500~1000(MHz)). In the PD carrier frequency, acoustic
It
detects the induced current through FBDS, amplifies

frequency is created by Armstrong coupling.
it, and convert the current to voltage to send to
microprocessor. The microprocessor performs Fourier
transform (FFT) bigger signal voltage among the
two, and ANR (Ambient Noise Rejection) by covering
it with Hamming Window. The filter bank selects the
optimum PD signal to transform in digital format
(ADC). This data is sent to the computer in order to
analyze and diagnose at time and frequency domains

in real time.

2. PD sound data collection

For collecting PD Acoustic Data, the system in
Fig. 2 utilized partial discharge sound analysis software
designed via Visual C++ in Fig. 3 to gather data
from the detected digital signal through the system
in Fig. 2. Partial discharge sound entered by the
sensor pass through the hard filter in the PD
detecting system in Fig. 2 and then, through ADC to
the USB port of the computer while being converted
from analog to digital. In here, the data was recorded
in 16hit, 20KHz.

The data on partial discharge sound generated
from three channels (CH1, CH2, and CH3) was
collected for analysis and diagnosis. Fig. 3 represents
the normal status (no partial discharge), the wave

form of time domain.
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Fig. 3. PD Collection and Analysis Software.
Fig. 4 shows the partial discharge in the time

domain. And the PD waveform is displayed as
spectrogram in the frequency domain by the FBDS
acoustic data analysis. Based on this, it confirms that

partial discharge can be detected in real-time
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Fig. 4. Partial Discharge by Spark of Lab.

3. FBDS acoustic data analysis algorithm

In order to analyze the FBDS acoustic data, the
process in Fig. 5 was performed. Hamming window
was utilized as window and its size is 300 samples.
The frequency analysis used 1024 point FFT.

As for the relative level cross rate (RLCR), it set a
threshold figure for each frame, and counted the
number of the signal wave form crossed the
threshold as shown in the formula (1).

(159)
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Fig. 5. Flow Chart of FBDS Acoustic Data Analysis.
Rlm) = 1 m ( lsgnlz(n) =L, —sgnlz(n—1)— L, )w(m*n)
Ny T 2

(1

1 z(n) =0

sgnlz(n)] :{71 z(n) <0

In this formula, N is the number of the samples in
the section to be analyzed, R(m) is the RLCR of
current sample m, Ly is the constant experimentally
determined, w(n) is Hamming window constant, and
x(n) is the signal to obtain RLCR. This formula(1)
can be used to clearly distinguish between the
acoustic signal and the noise.

Also, the frequency range is divided into three
steps for spectrogram analysis of FBDS acoustic
data. First, in the FBDS acoustic data, the frequency
energy in the low range O0(Hz)~2(KHz) was set as
Low spectral energy, and the frequency energy in
2(KHz)~5(KHz) was set as Medium spectral energy.
The frequency energy in the range of 5(KHz)~
10(KHz) was set as High spectral energy. With the
spectral energies set as above, the formula (2)

extracted the parameters of dbyy and dbyy.

_ Medium Spectral Energy

dbyyy, = Low Spectral Energy
(2)
dby;, = High Spectral Energy
L Low Spectral Energy
Based on these parameters of dbyg and dbyp, it

determines dbyy parameter and dbyg parameter
calculated from the sound signal of normal condition
as normal or abnormal whether the figures exist in
the error range or not. The determined parameters

were shown in color (spectrogram).
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III. Results and Discussion

1. Results
Fig. 6 is configured to test the partial discharge

of transformer oil spark instead of power cable and

Fig. 7 shows the power discharge by spark.
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Fig. 6. Partial Discharge Test by Transformer oil spark.
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Partial Discharge by spark.

Fig. 8 and 9 are the PD waveform shown by the
test results above Fig. 6 and 7.
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Fig. 8. Partial Discharge in the time domain.
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Partial Discharge in the frequency domain.

Fig. 10 is the FBDS acoustic of the three channels
(CH1, CH2, and CH3) in PD spark Lab. It shows the
relation of RLCR and spectrogram energy. With the
data collected from each channel, the formula (1)
calculated RLCR figures in order to display in the
graph.(Fig. 10)
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Fig. 11 displays RLCR values in the normal section
and abnormal section (where partial discharge (PD)

occurred) in terms of the three channels.

—systeml —system2 system3 —average

RLCR

freieg ; i ] T D]

a7 11, 3 Y LiollA RLCR 2l®ztel ¥t
Fig. 11. Variation of RLCR level in 3 channels.

RLCR values in the normal data frame were
ranged from 0 to 34, and the RLCR values in the
abnormal section (PD) were ranged from 4.0 to 14.1.
Figure 12 is the graph that compares the RLCR
figures of three channels. In this graph, it confirms
that the partial discharge was occurred according to
the RLCR values in real time.

(161)
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System 1
N | ABN_1|ABN_2 | ABN_3 | ABN_4 | ABN_5 ABN_6 ABN_7 |ABN_8 ABN_9
Th_1000 | 5.8 197 111 153 129 123 123 15.2 156 148
Th_1200 | 30 121 83 132 | 100 | 95 9.9 143 | 152 | 137
Th_1500 | 03 44 5.4 111 7.0 6.6 74 133 147 126
Th 1700 | 01 | 34 41 102 54 54 6.2 129 | 137 | 116
Th 2000 | 00 | 24 28 9.2 37 42 49 124 | 127 | 105
* N=Normal, ABN=Abnormal
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System 2
N | ABN_1|ABN_2 | ABN_3 | ABN_4 | ABN_5 ABN_6 ABN_7 |ABN_8 ABN_9
Th 1000 |42 126 | 148 | 180 | 123 | 140 | 134 | 137 | 135 | 141
Th 1200 |22 | 106 | 130 | 169 | 107 | 124 | 118 | 128 | 124 | 132
Th 1500 | 02 | 85 13 | 157 90 [ 107 | 101 | 119 [ 112 | 122
Th_ 1700 | 01 | 73 9.9 134 7.9 9.6 95 114 | 105 | 110
Th_2000 | 00 | 6.1 8.5 110 6.7 85 88 108 | 97 98
* N=Normal, ABN=Abnormal
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o
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=
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System 3
N | ABN_1|ABN_2 | ABN_3 | ABN_4 | ABN_5 ABN_6 ABN_7 |ABN_8 ABN_9
Th_1000 | 0.1 7.6 9.2 8.9 9.0 7.5 81 14 121 1.2
Th_ 1200 | 01 | 64 8.1 7.9 7.2 63 7.1 102 | 103 97
Th_1500 | 02 51 7.0 6.8 55 52 6.0 89 85 82
Th_ 1700 | 01 | 44 59 59 45 45 5.2 7.7 74 69
Th_2000 | 00 | 37 49 5.1 35 37 44 64 63 5.6
* N=Normal, ABN=Abnormal
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Fig. 12. Comparison of RLCR and threshold value.
The data displayed the spectrogram in the

frequency range. The energy figures in the three
domains were calculated by the formula (2). The
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figures of dbyp, and dby. in normal FBDS acoustic
data and abnormal FBDS acoustic data were
transformed into the graphs. According to the results
in Fig. 13, RLCR values are also confirmed that the
threshold level values were changed. However, the
analysis for the data values was remained untouched
for the further research.

N |ABN_1|ABN_2 | ABN_3 | ABN_4 | ABN_5 | ABN_6 ABN_7|ABN_8 ABN_9
Th.1000 |34 | 133 | 117 | 141 | 114 | 113 | 113 | 134 | 137 | 134
Th1200 (18| 97 | 98 | 126 | 93 | 94 | 96 | 124 | 126 | 122 |
Th 1500 (02 | 60 | 79 | 112 72 | 75 | 78 | 114 | 115 | 110

01, 50 | 66 | 98 | 59 | 65 | 69 105 | 9.8

84 55 6.0 9.9 9.6
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Fig. 13. Comparison of average RLCR and threshold

level value.

IV. Conclusion

In terms of the realization, the system designed to
analyze and diagnose the PD and the sensors in Fig. 6.

In this research, it investigated a constant diagnosis
for FBDS based on the normal FBDS acoustic data
and the analysis of the data from outside noise and
discharge inside of FBDS.

Conventional partial discharge detection method for
the PD of power cable was in the filter system.
However, it was difficult to distinguish between the
PD signal and noise.

In this paper, we present a new RLCR algorithm
and spectral energy analysis method. PD is detected
by an acoustic signal of FBDS.

As a result, it found out that the average RLCR
has high values over 4.0714.1. Also, by determining
partial discharge in real-time, it is expected to
contribute to the prevention and preservation of

electric power.

(162)
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Further research aims to apply the algorithm to
other systems of the power system. In addition, it
expects to utilize the algorithm to the system for
monitoring & diagnosis the electric system by building
the database on the basis of the data collected.
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