DOI QR코드

DOI QR Code

주파수에 따른 감쇠계수 변화량을 이용한 해저 퇴적물 특징 추출 알고리즘

Seabed Sediment Feature Extraction Algorithm using Attenuation Coefficient Variation According to Frequency

  • Lee, Kibae (Department of Ocean System Engineering, Jeju National University) ;
  • Kim, Juho (Sonar System PMO, Agency for Defense Development) ;
  • Lee, Chong Hyun (Department of Ocean System Engineering, Jeju National University) ;
  • Bae, Jinho (Department of Ocean System Engineering, Jeju National University) ;
  • Lee, Jaeil (Hanwha Co. Ltd.) ;
  • Cho, Jung Hong (Hanwha Co. Ltd.)
  • 투고 : 2016.09.22
  • 심사 : 2016.12.06
  • 발행 : 2017.01.25

초록

본 논문에서는 해저 퇴적물 분류를 위한 특징 추출 기법을 제안하고 검증한다. 기존 연구에서는 주파수의 영향이 없는 반사계수를 이용하여 퇴적물을 분류해 왔다. 그러나 해저 퇴적물의 음향 감쇠계수는 주파수의 함수이며 퇴적 성분에 따라 서로 다른 특성을 나타낸다. 따라서 주파수에 따른 감쇠계수 변화량을 이용하여 특징벡터를 생성하였다. 감쇠계수 변화량은 Chirp 신호에 의해 생성된 두 번째 층 반사신호를 이용하여 추정한다. Chirp 신호의 다중대역 특징이 다차원 벡터를 형성하기 때문에 기존의 방법에 비해 우수한 특성을 갖는다. 반사계수에 의한 분류 성능과 비교하기 위해 선형 판별 분석법 (LDA, Linear Discriminant Analysis)를 이용하여 차원을 축소하였다. Biot 모델을 이용하여 모의실험 환경을 구축하고 Fisher score와 MLD(Maximum Likelihood Decision)를 기반의 분류 정확도를 이용해 제안된 특징을 평가하였다. 그 결과, 제안된 특징은 반사계수에 비해 높은 변별력을 보이며, 측정 및 깊이 추정오차에도 강인한 특성을 보였다.

In this paper, we propose novel feature extraction algorithm for classification of seabed sediment. In previous researches, acoustic reflection coefficient has been used to classify seabed sediments, which is constant in terms of frequency. However, attenuation of seabed sediment is a function of frequency and is highly influenced by sediment types in general. Hence, we developed a feature vector by using attenuation variation with respect to frequency. The attenuation variation is obtained by using reflected signal from the second sediment layer, which is generated by broadband chirp. The proposed feature vector has advantage in number of dimensions to classify the seabed sediment over the classical scalar feature (reflection coefficient). To compare the proposed feature with the classical scalar feature, dimension of proposed feature vector is reduced by using linear discriminant analysis (LDA). Synthesised acoustic amplitudes reflected by seabed sediments are generated by using Biot model and the performance of proposed feature is evaluated by using Fisher scoring and classification accuracy computed by maximum likelihood decision (MLD). As a result, the proposed feature shows higher discrimination performance and more robustness against measurement errors than that of classical feature.

키워드

참고문헌

  1. Chan, J. K., and Yang, S. J., "Geoacoustic Modeling for Analysis of Attenuation Characteristics using Chirp Acoustic Profiling data", Geophysical exploration, Vol. 2, No. 4, pp. 202-208, 1999.
  2. Van Walree, P. A., Ainslie, M. A., and Simons, D. G., "Mean grain size mapping with single-beam echo sounders", The Journal of the Acoustical Society of America", Vol. 120, No. 5, pp. 255-256, 2006.
  3. LeBlanc, L. R., Mayer, L., Rufino, M., Schock, S. G., and King, L., "Marine sediment classification using the chirp sonar", The Journal of the Acoustical Society of America, Vol. 91, No. 1, pp. 107-115, 1992. https://doi.org/10.1121/1.402758
  4. Halmilton, E. L., "Compressional-Wave Attenuation in Marine Sediments", Geophysics, Vol. 37, pp. 602-646, 1972.
  5. Schock, S. G., "A Method for Estimating the Physical and Acoustic Properties of the Sea Bed Using Chirp Sonar Data", IEEE Journal of Ocean Engineering, Vol. 29, No. 4, pp. 1200-1217, 2004. https://doi.org/10.1109/JOE.2004.841421
  6. Han, H. Y., Introduction to Pattern Recognition, Hanbit media, 2009.
  7. Biot, M. A., "Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range", Journal of The Acoustical Society of America", Vol. 28, No. 2, pp. 168-178, 1956. https://doi.org/10.1121/1.1908239
  8. Biot, M. A., "Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. High-Frequency Range", Journal of The Acoustical Society of America, Vol. 28, No. 2, pp. 179-191, 1956. https://doi.org/10.1121/1.1908241
  9. Williams, K. L., Jackson, D. R., Thorsos, E. I., Tang, D., and Schock, S. G., "Comparison of Sound Speed and Attenuation Measured in a Sandy Sediment to Predictions Based on the Biot Theory of Porous Media", IEEE Journal of Ocean Engineering, Vol. 27, No. 3, pp. 413-427, 2002. https://doi.org/10.1109/JOE.2002.1040928
  10. Lee, J., Kang, Y., Lee, C. H., Lee, S. W., and Bae, J., "Analysis of Features and Discriminability of Transient Signals for a Shallow Water Ambient Noise Environment", Journal of the Institute of Electronics and Information Engineers, Vol. 51, No. 7, pp. 209-220, 2013. https://doi.org/10.5573/ieie.2014.51.7.209
  11. Lee, K., Lee, C. H., Bae, J., and Lee, J., "EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control", Journal of the Institute of Electronics and Information Engineers, Vol. 52, No. 8, pp. 117-125, 2015. https://doi.org/10.5573/ieie.2015.52.8.117
  12. Robert, M. G., Lee, D. D., An Introduction to Statistical Signal Processing, Cambridge University Press, 2004.

피인용 문헌

  1. Start Point Detection Method for Tracing the Injection Path of Steel Rebars vol.17, pp.6, 2017, https://doi.org/10.14801/jkiit.2019.17.6.9