DOI QR코드

DOI QR Code

An Recognition and Acquisition method of Distance Information in Direction Signs for Vehicle Location

차량의 위치 파악을 위한 도로안내표지판 인식과 거리정보 습득 방법

  • Received : 2016.08.08
  • Accepted : 2016.12.13
  • Published : 2017.01.25

Abstract

This study proposes a method to quickly and accurately acquire distance information on direction signs. The proposed method is composed of the recognition of the sign, pre-processing to facilitate the acquisition of the road sign distance, and the acquisition of the distance data. The road sign recognition uses color detection including gamma correction in order to mitigate various noise issues. In order to facilitate the acquisition of distance data, this study applied tilt correction using linear factors, and resolution correction using Fourier transform. To acquire the distance data, morphological operation was used to highlight the area, along with labeling and template matching. By acquiring the distance information on the direction sign through such a processes, the proposed system can be output the distance remaining to the next junction. As a result, when the proposed method is applied to system it can process the data in real-time using the fast calculation speed, average speed was shown to be 0.46 second per frame, with accuracy of 0.65 in similarity value.

본 논문에서는 도로안내표지판 내의 거리정보를 빠르고 정확하게 획득하는 방법을 제안한다. 제안된 방법은 표지판의 인식, 거리를 획득하기 용이한 전 처리 과정, 거리정보를 습득하는 것으로 구성된다. 표지판의 인식은 여러 가지 잡음을 해결하기 위해 감마 보정을 포함한 색상검출을 사용하였으며, 거리정보를 용이하게 획득하기 위해서 직선 인자를 이용한 기울기 보정과 고속 푸리에변환을 이용한 해상도 보정을 적용하였다. 거리정보를 습득하는 과정은 모폴로지 연산을 통해 영역을 부각하고 레이블링, 템플릿 매칭을 사용하였다. 이러한 과정을 통해 도로안내표지판의 거리정보를 습득하여 분기점까지 남은 거리를 출력하는 시스템을 제안하였다. 결과적으로 연산속도 개선에 중점을 두어 실시간으로 처리할 수 있는 시스템에 사용 가능하며, 그 결과 프레임 당 평균 0.46초의 속도를 가지며, 정확도에서도 유사도 0.65의 수치를 갖는다.

Keywords

References

  1. http://www.law.go.kr/법령/도로표지규칙/(00294,20160302)
  2. Heechul Lim, Kaushik Deb, Kang-Hyun Jo, "Geometrical Reorientation of Distorted Road Sign using Projection Transformation for Road Sign Recognition," Journal of Institute of Control, Robotics and Systems, pp. 1088-1095, November. 2009.
  3. Kim Tae-Dong, Lee Seung-Hyun, Jung Gwang-Hoon, Kang Dong-Wook, Jung Kyeong-Hoon, "Real-time Traffic Sign Detection Algorithm by Using Color Information and HOG Feature," The Korean Society Of Broad Engineers, pp. 513-515, July. 2015.
  4. N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," Proc. of Computer Vision and Pattern Recognition, pp. 886-893, 2005.
  5. Chang, Sang Kyu, Kim, Jin Soo, "Automatic Measurement Method of Traffic Signs Using Image Recognition and Photogrammetry Technology," Journal of the Korean society for geo-spatial information system, 21(3), 19-25, Sept. 2013.
  6. Seong-Uk Kim, Joon-Woong Lee, "Traffic Sign Recognition, and Tracking Using RANSAC-Based Motion Estimation for Autonomous Vehicles," Journal of Institute of Control, Robotics and Systems, 22(2), 110-116, Feb. 2016. https://doi.org/10.5302/J.ICROS.2016.15.0191
  7. Seaung-Lok Ham, Nojun Kwak, "Binary classification by the combination of Adaboost and feature extraction methods," The Institute of Electronics Engineers of Korea, Computer and Information, 49(4), 42-53, July. 2012.
  8. N. Otsu, "A threshold selection method from gray-level histograms," IEEE trans. Systems, Man, and Cybernetics, vol. SMC-9, no. 1, pp. 62-66, Jan. 1979.
  9. Jung Hun Kim, Gibak Kim. "A Binarization Technique using Histogram Matching for License Plate with a Shadow," Journal of Broadcast Engineering, 19(1), 56-63, Jan, 2014. https://doi.org/10.5909/JBE.2014.19.1.56
  10. Taewoo Lee, Kwangyong Lim, Guntae Bae, Hyeran Byun, Yeongwoo Choi, "An Illumination Invariant Traffic Sign Recognition in the Driving Environment for Intelligence Vehicles," Journal of KIISE, 42(2), 203-212, Feb. 2015. https://doi.org/10.5626/JOK.2015.42.2.203
  11. Rafael C.Gonzalez, Richard E.woods, Steven L. Edins, "Digital Image Processing using MATLAB," Prentice-Hall, 2004.
  12. Richard Szeliski, "Computer Vision : Algorithms and Applications," Springer, 2010.
  13. R. Brunelli and T. Poggio, "Face Recognition Features Versus Templates," IEEE Tran. on PAMI, Vol. 15, pp. 1042-1052, Oct. 1993. https://doi.org/10.1109/34.254061
  14. Bo-Ho Cho, Sung-Hwan Jung. "Efficient Correction of a Rotated Object Using Radon Transform," Journal of KIISE : Computing Practices and Letters, 14(3), 291-295. May, 2008.
  15. Eun-kyoung Park, Sang-hoon Lee, Eui-young Cha. "The Derotation of the Tilted Face Using Skin Color Information," Journal of Information Science Society, 30(2II), 541-543. Oct. 2003.
  16. Jae-hyon Ju, Jeong-su Oh. "Skew Correction of Document Images using Edge," Journal of Korea Institute of Information and Communication Engineering, 16(7), 1487-1494, July. 2012. https://doi.org/10.6109/jkiice.2012.16.7.1487
  17. Jae-Hyun Cho, Young-Min Jang, Sang-Bok Cho, "A High-performance Lane Recognition Algorithm Using Word Descriptors and A Selective Hough Transform Algorithm with Four-channel ROI," Journal of the Institute of Electronics and Information Engineers, 52(2), 148-161, Feb. 2015. https://doi.org/10.5573/ieie.2015.52.2.148
  18. Mi-Hwa Choi, Hee-Seung Kim. "Text Location in Scene Images," Journal of Information Science Society, 27(2II), 389-391. Oct. 2000.
  19. Seung-Wook Park, Ji-Ho Park, Byeong-Moon Jeon, Hyun Wook Park. "Efficient Image Upsampling using Frequency Resolution Expansion Schemes in DCT Domain," Journal of Broadcast Engineering, 10(4), 505-514, Dec. 2005.
  20. http://map.daum.net/
  21. https://www.youtube.com/ watch?v=VTBhAzr7g-U

Cited by

  1. CNN 알고리즘을 이용한 체커스위치 불량 검출 시스템 개발 vol.18, pp.12, 2017, https://doi.org/10.14775/ksmpe.2019.18.12.038