References
- E. Artin, Geometric Algebra, Interscience Publishers, Inc., New York-London, 1957.
- H. Bass, On the ubiquity of Gorenstein rings, Math. Z 82 (1963), 8-28. https://doi.org/10.1007/BF01112819
- A. Brown, A structure theorem for a class of grade three perfect ideals, J. Algebra 105 (1987), no. 2, 308-327. https://doi.org/10.1016/0021-8693(87)90196-7
- L. Burch, On ideals of finite homological dimension in a local rings, Proc. Cambridge Philos. Soc. 64 (1968), 941-948. https://doi.org/10.1017/S0305004100043620
- D. A. Buchsbaum and D. Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259-268. https://doi.org/10.1016/0021-8693(73)90044-6
- D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), no. 3, 447-485. https://doi.org/10.2307/2373926
- Y. S. Cho, A structure theorem for a class of Gorenstein ideals of grade four, Honam Math. J. 36 (2014), no. 2, 387-398. https://doi.org/10.5831/HMJ.2014.36.2.387
- Y. S. Cho, On a class of Gorenstein ideals of grade four, Honam Math. J. 36 (2014), no. 3, 605-622. https://doi.org/10.5831/HMJ.2014.36.3.605
- E. J. Choi, O.-J. Kang, and H. J. Ko, On the structures of the grade three perfect ideals of type 3, Commun. Korean Math. Soc. 23 (2008), no. 4, 487-497. https://doi.org/10.4134/CKMS.2008.23.4.487
- E. J. Choi, O.-J. Kang, and H. J. Ko, A structure theorem for complete intersections, Bull. Korean Math. Soc. 46 (2009), no. 4, 657-671. https://doi.org/10.4134/BKMS.2009.46.4.657
- E. S. Golod, A note on perfect ideals, from the collection "Algebra" (A. I. Kostrikin, Ed), Moscow State Univ. Publishing House, 37-39, 1980.
- D. Hilbert, Uber die Theorie von Algebraischen Forman, Math. Ann. 36 (1890), no. 4, 473-534. https://doi.org/10.1007/BF01208503
-
A. Iarrobino and H. Srinivasan, Artinian Gorenstein Algebras of embedding dimension four: components of
${\mathbb{P}}Gor$ (H) for (1, 4, 7, . . . , 1), J. Pure Appl. Algebra 201 (2005), no. 1-3, 62-96. https://doi.org/10.1016/j.jpaa.2004.12.015 - O.-J. Kang, Structure theory for grade three perfect ideals associated with some matrices, Comm. Algebra 43 (2015), no. 7, 2984-3019. https://doi.org/10.1080/00927872.2014.900684
- O.-J. Kang, Y. S. Cho, and H. J. Ko, Structure theory for some classes of grade perfect ideals, J. Algebra 322 (2009), no. 8, 2680-2708. https://doi.org/10.1016/j.jalgebra.2009.07.021
- O.-J. Kang and H. J. Ko, The structure theorem for complete intersections of grade 4, Algebra Collo. 12 (2005), no. 2, 181-197. https://doi.org/10.1142/S1005386705000179
- S. El Khoury and H. Srinivasan, A class of Gorenstein Artin Algebras of embedding dimension four, Comm. Algebra 37 (2009), no. 9, 3259-3277. https://doi.org/10.1080/00927870802502738
- A. Kustin and M. Miller, Structure theory for a class of grade four Gorenstein ideals, Trans. Amer. Math. Soc. 270 (1982), no. 1, 287-307. https://doi.org/10.1090/S0002-9947-1982-0642342-4
- A. Kustin and M. Miller, Tight double linkage of Gorenstein algebras, J. Algebra 95 (1985), no. 2, 384-397. https://doi.org/10.1016/0021-8693(85)90110-3
- C. Peskine and L. Szpiro, Liaison des varietes algebriques, Invent. Math. 26 (1974), 271-302. https://doi.org/10.1007/BF01425554
- R. Sanchez, A structure theorem for type 3, grade 3 perfect ideals, J. Algebra 123 (1989), no. 2, 263-288. https://doi.org/10.1016/0021-8693(89)90047-1