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PRACTICAL INVESTMENT STRATEGIES UNDER A

MULTI-SCALE HESTON’S STOCHASTIC VOLATILITY

MODEL

Jai Heui Kim* and Sotheara Veng

Abstract. We study an optimization problem for HARA utility function

under a multi-scale Heston’s stochastic volatility model. We investigate a
practical strategy that do not depend on the incorporated factor which is

unobservable in the market.

1. Introduction

In this study, we suppose that an investor manages his or her initial wealth
X0 by investing in a financial market consisting of a risky asset and a risk-free
asset whose price processes are given as follows. The price Bt of the risk-free
asset at time t follows the ordinary differential equation (ODE)

dBt = rBtdt, (1)

where r > 0 is a constant interest rate. The price St of risky one is given by
the following stochastic differential equation (SDE)

dSt
St

= µ(Yt, Zt)dt+ f(Yt)
√
ZtdW

s
t , (2)

where

dYt =
Zt
ε
β(Yt)dt+

√
Zt
ε
α(Yt)dW

y
t , (3)

dZt = κ(θ − Zt)dt+ σ
√
ZtdW

z
t . (4)
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Here W s,W y and W z are correlated Brownian motions in a filtered probability
space

(
Ω,F ,Ft, P

)
with correlation structure given by

d
〈
W s,W y

〉
t

= ρsydt,

d
〈
W s,W z

〉
t

= ρszdt,

d
〈
W y,W z

〉
t

= ρyzdt.

The correlation coefficients ρsy, ρsz and ρyz are constants in (−1, 1) satisfying
ρ2
sy +ρ2

sz +ρ2
yz− 2ρsyρszρyz < 1, so that the covariance matrix of the Brownian

motions is guaranteed to be positive definite.
We will specify assumptions on the coefficients µ(y, z), f(y), α(y) and β(y)

of our model later. We assume that given Zt = z, the process Yt in (1.3) is a

mean-reverting process and Yt = Y
(1)
t/ε in distribution, where Y (1) is an ergodic

diffusion process with unique invariant distribution denoted by Φ (independent
of ε) and has the infinitesimal generator L0 defined by

L0 =
1

2
α2(y)

∂2

∂y2
+ β(y)

∂

∂y
. (5)

We use the notation 〈·〉 for averaging with respect to Φ, i.e.,

〈g〉 =

∫
g(y)Φ(dy). (6)

In this case we call (Bt, St) a financial market with a multiscale Heston’s sto-
chastic volatility model.

We assume that the investor dynamically manages his or her portfolio by
allocating a fraction πt of the wealth at time t ∈ [0, T ] in the risky asset, while
the remaining amount is held in the risk-free asset earning the risk-free interest
of r. Assuming the investment strategy π is self-financing, the associated wealth
process Xπ

t satisfies

dXt = Xt {r + πt (µ(Yt, Zt)− r)} dt+ πtf(Yt)
√
ZtXtdW

s
t . (7)

We assume that all coefficients of the above SDEs are Ft–progressively mea-
surable and that the system of SDEs (1.2) - (1.4) and (1.10) has unique strong
solution. Given for a fixed parameter ε and a strategy πt, we denote the solution
of (1.10) by (Xε,π(t))t∈[0,T ]. The control function πt is said to be admissible if
it is Ft–progressively measurable and satisfies

E
[ ∫ T

0

π2
t f

2(Yt)ZtX
2
t dt
]
<∞.

We denote the set of all admissible strategies by A. We assume that µ(Yt, Zt)−
r = µ(Yt)Zt, so that the market price of risk ζt is given by

ζt =
µ(Yt, Zt)− r
f(Yt)

√
Zt

=
µ(Yt)

f(Yt)

√
Zt := λ(Yt)

√
Zt. (8)
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Since our financial market model (Bt, St) is very complicate, it is impossible
to get the implicit form of the optimal investment strategy. So some approxi-
mations of the optimal strategy are studied (cf. [6, 7]). The major contribution
of this work is to show that the portfolio optimization problem under the multi-
scale stochastic volatility model built on the Heston’s model can be treated
similarly as the one considered in Fouque et al. [6] for HARA utility functions.
This is accomplished by taking advantage of the explicit form of value function
derived in Kraft [8] under the pure Heston’s model.

The structure of this paper is as follows. In Section 2, we formulate our
problem and derive the associated HJB equation and the asymptotic analysis
method is applied to obtain explicit approximations to the value function and
the optimal investment strategy for the HARA utility functions. Section 3 intro-
duces a practical investment strategy that does not depend on the unobservable
fast factor of volatility.

2. Formulation of the problem and theory background

In this section we formulate our stochastic optimization problem and derive
the associated HJB equation. We define the value function corresponding to an
investment strategy π by

V ε,π(t, x, y, z) = E
[
U(Xε,π

T )
∣∣Xε,π

t = x, Yt = y, Zt = z
]
.

for all (t, x, y, z) ∈ [0, T ]×R1 ×R1 ×R1, where U is a HARA utility function
defined by

U(x; p, q, η) =
1− p
pq

(
qx

1− p
+ η

)p
, q > 0, p < 1, p 6= 1 (9)

and E[X|A] is the conditional expectation of a random variable X given an
event A. The object of the investor is to find the optimal investment strategy
π∗ such that

V ε,π
∗
(t, x, y, z) = sup

π∈A
E
[
U(Xπ

T )
∣∣Xπ

t = x, Yt = y, Zt = z
]
.

and the optimal value function

V ε(t, x, y, z) = V ε,π
∗
(t, x, y, z).

In fact, the optimal value function is the value function corresponding to the
optimal investment strategy π∗. Then the associated Hamilton-Jacobi-Bellman
(HJB) equation (cf. Øksendal [9]) for V ε is given by, for t ∈ [0, T ], x ∈ R+,
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y ∈ R and z ∈ R+,

V εt +
z

ε
L0V

ε + rxV εx + κ(θ − z)V εz +
1

2
σ2zV εzz +

1√
ε
ρyzσα(y)zV εyz

+ sup
π

[
1

2
π2f2(y)zx2V εxx+πzx

(
µ(y)V εx + ρszσf(y)V εxz

+
1√
ε
ρsyα(y)f(y)V εxy

)]
= 0

(10)

where the terminal condition is given by

V ε(T, x, y, z) = U(x). (11)

Maximizing the quadratic expression in π, the optimal investment strategy is
given in feedback form by

π∗(t, x, y, z) = −
λ(y)V εx + ρszσV

ε
xz + 1√

ε
ρsyα(y)V εxy

f(y)xV εxx
, (12)

where λ is the function defined in (8). Substituting this optimal strategy into
(10) yields

V εt +
z

ε
L0V

ε + rxV εx + κ(θ − z)V εz +
1

2
σ2zV εzz +

1√
ε
ρyzσα(y)zV εyz

−
z
(
λ(y)V εx + ρszσV

ε
xz + 1√

ε
ρsyα(y)V εxy

)2

2V εxx
= 0. (13)

Assumption 2.1. As in Fouque et al [6], we assume that the value function
V ε(t, x, y, z) is strictly increasing, strictly concave in x for each t ∈ [0, T ), y ∈ R
and z ∈ R+, and is smooth enough on the domain [0, T ]×R+×R×R+. We also
assume that it is the unique solution for the HJB equation (10) with terminal
condition (11).

We now use asymptotic analysis developed in Fouque et al [3] to obtain
approximations to the value function and optimal investment strategy for the
HARA utility function defined in (9).

We begin by expanding the optimal value function V ε(t, x, y, z) in powers of√
ε as

V ε(t, x, y, z) = V (0)(t, x, y, z) +
√
εV (1)(t, x, y, z) + εV (2)(t, x, y, z) + · · · , (14)

for any small positive parameter ε < 1. Then we substitute this expansion into
(13) and successively compare powers of ε. Collecting the ε−1 order terms gives

zL0V
(0) − 1

2
ρ2
syα

2(y)z

(
V

(0)
xy

)2

V
(0)
xx

= 0. (15)
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As in [6], a well-behaved solution V (0) of (15) must be independent of y, and
then we choose V (0) = V (0)(t, x, z).

Next, comparing the ε−
1
2 order terms in the (13) leads to

L0V
(1) = 0,

since V (0) is independent of y. Similarly, we choose V (1) to be independent of
y. Using the y–independence of V (0) and V (1), the order one terms in (13) are
collected as

V
(0)
t + zL0V

(2) + rxV (0)
x + κ(θ − z)V (0)

z +
1

2
σ2zV (0)

zz

−
z
(
λ(y)V

(0)
x + ρszσV

(0)
xz

)2

2V
(0)
xx

= 0. (16)

Viewing (16) as a Poisson equation for V (2) in y, the centering condition is given
by 〈

V
(0)
t + rxV (0)

x + κ(θ − z)V (0)
z +

1

2
σ2zV (0)

zz − τ(t, x, y, z)

〉
= 0,

where
〈
·
〉

is the averaging operator defined in (6) and

τ(t, x, y, z) =
z
(
λ(y)V

(0)
x + ρszσV

(0)
xz

)2

2V
(0)
xx

..

Then it follows that

V
(0)
t + rxV (0)

x + κ(θ − z)V (0)
z +

1

2
σ2zV (0)

zz −
1

2
λ̃2z

(
V

(0)
x

)2

V
(0)
xx

−ρszσλ̄z
V

(0)
x V 0

zx

V
(0)
xx

− 1

2
ρ2
szσ

2z

(
V

(0)
zx

)2

V
(0)
xx

= 0, (17)

with λ̄ = 〈λ〉 and λ̃2 =
〈
λ2
〉
. From the expansion (14) of V , we have the

terminal condition

V (0)(T, x, z) = U(x). (18)

Remark 1. We observe that when λ(y) = 1, (17) reduces to the HJB equation
corresponding to the pure Heston model where its solution can be computed
explicitly (see, for example,[8]).

It is possible to obtain a closed-form solution for the PDE (17) with terminal
condition (18) for HARA utility functions. Next result is given by Kim and
Veng [7], which can be viewed as a generalization of Proposition 3.1 in [11].
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Theorem 2.1. ([7]). For the HARA utility function U given in (9), the PDE
(17) with the terminal condition (18) has an explicit solution

V (0)(t, x, z) =
1− p
pq

( qx

1− p
er(T−t) + η

)p
eA(t)+B(t)z, (19)

where A(t) and B(t) are C1 real-valued functions given as follows. Denote

Γ = 2

σ2

(
p

1−pρ
2
sz+1

) ,
m1,2 = K ± 1

2

√
∆,

K = 1
2

(
κ− p

1−pρszσλ̄
)
,

∆ =
p2ρ2szσ

2

(
λ̄2−λ̃2

)
+κ2(1−p)2−2p(1−p)ρszσλ̄κ−p(1−p)σ2λ̃2

(1−p)2 .

Case 1: If ∆ 6= 0. Then

A(t) = κθΓ

[
m1(T − t)− ln

(
1− m1

m2
e(T−t)

√
∆

1− m1

m2

)]
,

B(t) = Γ
m1

(
1− e

√
∆(T−t)

)
1− m1

m2
e
√

∆(T−t)
,

Case 2: If ∆ = 0 and 0 < 1 +KT . Then

A(t) = κθΓ (K(T − t)− ln (1−K(t− T ))) ,

B(t) = Γ
K2(t− T )

K(t− T )− 1
.

Remark 2. (1) The condition 0 < 1 + KT appearing in the case ∆ = 0 is
imposed to assure that A(t) is well-defined and bound (and then so is V (0)) on
[0, T ].
(2) We observe from Theorem 2.1 that V (0) satisfies

V (0)
z (t, x, z) = B(t)V (0)(t, x, z) (20)

for all (t, x, z) ∈ [0, T ] × R+ × R+. This property is very important for us to
derive an explicit expression for the first order correction term V (1).

For convenience, we recall the following notation introduced in [6]

R(t, x) = −V
(0)
x (t, x, z)

V
(0)
xx (t, x, z)

, (21)

Dj = Rj(t, x)
∂j

∂xj
, j = 1, 2, . . . . (22)
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We notice that R is well defined as V (0) is strictly concave. From (20), di-
rect computation shows that R is independent of z, and that is reason we
wrote R(t, x) rather than R(t, x, z). We also introduce the linear operator
Lt,x,z(λ1, λ2) defined by

Lt,x,z(λ1, λ2) =
∂

∂t
+ rx

∂

∂x
+ κ(θ − z) ∂

∂z
+

1

2
σ2z

∂2

∂z2

+
(
λ2

1 + ρszσλ2B(t)
)
zD1

+
1

2

(
λ2

1 + 2ρszσλ2B(t) + ρ2
szσ

2B2(t)
)
zD2

+ ρszσ (λ2 + ρszσB(t)) zD1
∂

∂z
.

(23)

Then it follows that (17) can be written as

Lt,x,z
(
λ̃, λ̄

)
V (0) = 0. (24)

Similarly, we can rewrite (16) using the operator Lt,x,z as

zL0V
(2) + Lt,x,z

(
λ(y), λ(y)

)
V (0) = 0. (25)

Then it follows from (24) and (25) that

L0V
(2) = −1

z

(
Lt,x,z

(
λ(y), λ(y)

)
− Lt,x,z

(
λ̃, λ̄

))
V (0)

Hence,

V (2) = −1

z
L−1

0

(
Lt,x,z

(
λ(y), λ(y)

)
− Lt,x,z

(
λ̃, λ̄

))
V (0), (26)

where L−1
0 is the inverse operator of L0.

Now we proceed to derive the first order correction term V (1). Collecting the
order

√
ε terms in the expansion of the PDE (13) and using of (20), (21) and

(22), we get

zL0V
(3) + Lt,x,z

(
λ(y), λ(y)

)
V (1) + zL1V

(2) = 0, (27)

where

L1 = ρyzσα(y)
∂2

∂y∂z
+ ρsyα(y)

(
λ(y) + ρszσB(t)

)
R

∂2

∂x∂y
.

Viewing (27) as a Poisson equation for V (3) in y, the centering condition is given
by 〈

Lt,x,z(λ(y), λ(y))V (1) + zL1V
(2)
〉

= 0.

Since V (1) does not depend on y, we deduce that

Lt,x,z
(
λ̃, λ̄

)
V (1) = −z

〈
L1V

(2)
〉
.

Substituting V (2), given by (26) , into this equation yields

Lt,x,z(λ̃, λ̄)V (1) = AV (0), (28)
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where

A = z

〈
L1

1

z
L−1

0

(
Lt,x,z(λ(y), λ(y))− Lt,x,z(λ̃, λ̄)

)〉
.

From the expansion (14), the PDE (28) has the terminal condition

V (1)(T, x, z) = 0. (29)

With V (0) given in Theorem 2.1, we can derive V (1) explicitly in terms of
V (0) as in the following theorem. The following result is given in [7].

Theorem 2.2. ([7]). The linear PDE (28) with terminal condition (29) has a
solution of the form

V (1)(t, x, z) =
(
g1(t) + g2(t)z

)
V (0)(t, x, z), (30)

where the functions g1(t) and g2(t) are given by

g1(t) = κθ

∫ T

t

g2(s)ds, , g2(t) = −
∫ T

t

C(t, s)b(s)ds,

b(t) = P
(
PρsyF3 + (ρyzσF1 + Pρsyρszσ(F1 + F4))B(t)

+
(
ρyz + Pρsyρsz

)
ρszσ

2F2B
2(t)

)
,

and the function C(t, s) is defined as follows:
Case 1: If ∆ 6= 0, then

C(t, s) = e
√

∆(s−t)

(
1− m1

m2
e
√

∆(T−s)

1− m1

m2
e
√

∆(T−t)

)2

.

Case 2: If ∆ = 0 and 0 < 1 +KT , then

C(t, s) =

(
1−K(s− T )

1−K(t− T )

)2

.

Here, B(t),K,m1,m2 and ∆ are defined as in Theorem 3.1.

Since we have computed an asymptotic approximation for the value function,
we can proceed to derive that for the optimal strategy π∗ defined in (12). Like
the value function, we look for the optimal strategy π∗ of the form

π∗(t, x, y, z) = π∗(0) +
√
επ∗(1) + επ∗(2) + · · · ,

and we are interested to derive the terms π(0) and π(1) explicitly.
Substituting the expansion (14) for V ε into (12) and using the results of

Theorem 2.1, Theorem 2.2 and the fact that D2V
(0) = −D1V

(0), we get

π∗(0) =
1

qf(y)
(λ(y) + ρszσB(t))

( q

1− p
+
ηer(t−T )

x

)
(31)
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and

π∗(1) =
1

qf(y)
[ρszσg2(t)− Pρsyα(y) (φ′(y) + ρszσB(t)ψ′(y))]

×
(

q

1− p
+
ηer(t−T )

x

)
.

(32)

3. Practical strategies

The fast factor Y is not directly observable in the market and requires com-
plicated techniques to be filtered from the return data of the risky asset. In
this section, we wish to find a practical strategy that does not depend on this
hidden level. As in [6], we apply asymptotic analysis to obtain this suboptimal
strategy. Let B be the set of all admissible strategies of the form

π̄ = π̄(0) +
√
επ̄(1) + επ̄(2) + · · · , (33)

where the principal terms π̄(0) and π̄(1) do not depend on y. Then we have
the following results for this constrained optimization problem. The investment
strategy π̄∗ satisfying

V ε,π̄
∗
(t, x, y, z) = sup

π̄∈B
E
[
U(X π̄

T )
∣∣X π̄

t = x, Yt = y, Zt = z
]
.

is called suboptimal.

Theorem 3.1. We denote V̄ the value function corresponding to the optimiza-
tion problem in which investment strategies are of the form (33). Moreover, we
suppose that V̄ can be expanded as

V̄ = V̄ (0) +
√
εV̄ (1) + εV̄ (2) + · · · . (34)

For the HARA utility function defined in (9), the principal terms π̄∗(0) and π̄∗(1)

of the suboptimal strategy π̄∗ are given by

π̄∗(0) =
1

q

(
µ̄+ ρ̄szσB̄(t)

)( q

1− p
+
ηer(t−T )

x

)
, (35)

π̄∗(1) =
1

q

[
ρ̄szσḡ2(t) + Pρsy

(
F̃4C

2(t)− F̃5C(t)− ρszσF̃6C(t)B̄(t)
)]

×

(
q

1− p
+
ηer(t−T )

x

)
,

(36)

where the function C(t) is defined by

C(t) =
(
µ̄+ ρ̄szσB̄(t)

)
, (37)

and the group parameters F̃i are defined by

F̃k =
〈
αγ′k

〉
, F̃k+3big〈αfγ′k

〉
, k = 1, 2, 3. (38)
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Here the functions γi(y) are solutions of the following equations

L0γ1 =
1

2

(
f2(y)− f̃2

)
, (39)

L0γ2 = µ(y)− µ̄, (40)

L0γ3 = f(y)− f̄ . (41)

The corresponding leading order value function V̄ (0) is given explicitly as

V̄ (0)(t, x, z) =
1− p
pq

( qx

1− p
er(T−t) + η

)p
eĀ(t)+B̄(t)z, (42)

where Ā(t) and B̄(t) are respectively real-value functions A(t) and B(t), given in

Theorem 2.1, with λ̃, λ̄ and ρsz replaced by µ̄, µ̄ and ρ̄sz, respectively. Moreover,
the first correction term V̄ (1) is given explicitly as

V̄ (1)(t, x, z) = (ḡ1(t) + ḡ2(t)z) V̄ (0), (43)

where the functions ḡ1(t) and ḡ2(t) are expressed in similar forms as g1(t) and
g2(t) given in Theorem 2.2.

Proof. Substituting the expansions (33) and (34) in (10) and collecting the ε−1

order terms yields
zL0V̄

(0) = 0. (44)

Viewing (44) as a Poisson equation in y, we choose V̄ (0) to be independent of
y.

Next, comparing the ε−
1
2 order terms yields

zL0V̄
(1) = 0, (45)

due to the y–independence of V̄ (0). Likewise, V̄ (1) is also chosen to be indepen-
dent of y. Then, collecting the order one terms gives

sup
π̄∈B

[
zL0V̄

(2) + V̄
(0)
t + rxV̄ (0)

x + κ(θ − z)V̄ (0)
z

+
1

2
σ2zV̄ (0)

zz +
1

2

(
π̄(0)

)2
f2(y)zx2V̄ (0)

xx

+ π̄(0)zx
(
µ(y)V̄ (0)

x + ρszσf(y)V̄ (0)
xz

)]
= 0.

(46)

In order for the maximizer π̄(0) to be independent of y, the argument being
maximized must be y–independent, and then the only way to do so is to choose
V̄ (2) as a solution of following Poisson equation

zL0V̄
(2) +

1

2

(
π̄(0)

)2(
f2(y)− f̃2

)
zx2V̄ (0)

xx

+ π̄(0)zx
(

(µ(y)− µ̄) V̄ (0)
x + ρszσ

(
f(y)− f̄

)
V̄ (0)
xz

)
= 0,

(47)

where f̄ = 〈f〉 and f̃2 = 〈f2〉. With this choice of V̄ (2), (46) becomes
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sup
π̄∈B

[
V̄

(0)
t + rxV̄ (0)

x + κ(θ − z)V̄ (0)
z +

1

2
σ2zV̄ (0)

zz

+
1

2

(
π̄(0)

)2
f̃2zx2V̄ (0)

xx + π̄(0)zx
(
µ̄V̄ (0)

x + ρszσf̄ V̄
(0)
xz

)]
= 0.

(48)

Without loss of generality, we may assume that f satisfies
〈
f2
〉

= 1 and then
we denote ρ̄sz = ρsz〈f〉. Hence, we observe that the nonlinear PDE (48) is
the HJB equation corresponding to the optimization problem under the pure
Heston model with effective correlation ρ̄sz. It is easy to compute the maximizer
in (48) as

π̄∗(0) = − µ̄V̄
(0)
x + ρ̄szσV̄

(0)
xz

xV̄
(0)
xx

, (49)

and with this maximizer, (48) is equivalent to

V̄
(0)
t + rxV̄ (0)

x + κ(θ − z)V̄ (0)
z +

1

2
σ2zV̄ (0)

zz

−
z
(
µ̄V̄

(0)
x + ρ̄szσf̄ V̄

(0)
xz

)2

2V̄
(0)
xx

= 0.

(50)

Referring to the expansion (34), the terminal condition of (50) is given by

V̄ (0)(T, x, z) = U(x). (51)

The PDE (50) is exactly the PDE (17) with λ̃, λ̄ and ρsz replaced by µ̄, µ̄ and
ρ̄sz, respectively. Then from Theorem 2.1 a solution of the PDE (50) with
terminal condition (51) is given by (42). Using the definition (21) of R, it
follows from (49) that π̄∗(0) is given by (35).

Finally, collecting the
√
ε order terms gives

sup
π̄∈B

[
zL0V̄

(3) + V̄
(1)
t + rxV̄ (1)

x + κ(θ − z)V̄ (1)
z

+
1

2
σ2zV̄ (1)

zz + ρyzσα(y)zV (2)
yz

+ f2(y)zx2

(
1

2

(
π̄(0)

)2

V̄ (1)
xx + π̄(0)π̄(1)V̄ (0)

xx

)
+ π̄(0)zx

(
µ(y)V̄ (1)

x + ρszσf(y)V̄ (1)
xz + ρsyα(y)f(y)V̄ (2)

xy

)
+ π̄(1)zx

(
µ(y)V̄ (0)

x + ρszσf(y)V̄ (0)
xz

)]
= 0.

(52)

In order for the maximizers π̄(0) and π̄(1) to be independent of y, the argument
being maximized must be independent of y, and then the only way to do so is
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to choose V̄ (3) as a solution of following Poisson equation

zL0V̄
(3) + ρyzσz

(
α(y)V (2)

yz −
〈
αV (2)

yz

〉)
+
(
f2(y)− 1

)
zx2

(
1

2

(
π̄(0)

)2

V̄ (1)
xx + π̄(0)π̄(1)V̄ (0)

xx

)
r

+ π̄(0)zx

[(
µ(y)− µ̄

)
V̄ (1)
x + ρszσ

(
f(y)− f̄

)
V̄ (1)
xz

+ ρsy

(
α(y)f(y)V̄ (2)

xy −
〈
αfV̄ (2)

xy

〉)]
+ π̄(1)zx

((
µ(y)− µ̄

)
V̄ (0)
x + ρszσ

(
f(y)− f̄

)
V̄ (0)
xz

)
= 0.

Then, with this choice, (52) becomes

sup
π̄∈B

[
V̄

(1)
t + rxV̄ (1)

x + κ(θ − z)V̄ (1)
z +

1

2
σ2zV̄ (1)

zz + ρyzσz
〈
αV (2)

yz

〉
+ zx2

(
1

2

(
π̄(0)

)2

V̄ (1)
xx + π̄(0)π̄(1)V̄ (0)

xx

)
+ π̄(0)zx

(
µ̄V̄ (1)

x + ρ̄szσV̄
(1)
xz + ρsy

〈
αfV̄ (2)

xy

〉)
+ π̄(1)zx

(
µ̄V̄ (0)

x + ρ̄szσV̄
(0)
xz

)]
= 0.

(53)

The maximizing conditions for (53) are given by

π̄∗(0) = − µ̄V̄
(0)
x + ρ̄szσV̄

(0)
xz

xV̄
(0)
xx

,

π̄∗(1) =
1

xV̄
(0)
x

(
µ̄D1V̄

(1) + ρ̄szσD1V̄
(1)
z

+
(
µ̄+ ρ̄szσB̄(t)

)
D2V̄

(1) + ρsyD1

〈
αfV (2)

y

〉)
.

(54)

Substituting these maximizers into (53) and expressing in terms of the operator
(23) gives

Lt,x,z
(
µ̄, µ̄

)
V̄ (1) + z

〈
L2V̄

(2)
〉

= 0, (55)

where Lt,x,z was given in (23) with ρsz replaced by ρ̄sz = ρsz f̄ and L2 is defined
by

L2 = ρyzσα(y)
∂2

∂y∂z
+ ρsy

(
µ̄+ ρ̄szσB̄(t)

)
α(y)f(y)R

∂2

∂x∂y
(56)
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From (47), we choose π̄(0) to be π̄∗(0) defined in (35) and then up to a constant
in y, we have

V̄ (2) =
{
γ1(y)C(t)2 − γ2(y)C(t)− ρszσγ3(y)C(t)B̄(t)

}
D1V̄

(0), (57)

where the function C(t) is defined by (37), and the functions γi(y) are given in
(39)-(41). Then from (56) and (57) we can compute〈

L2V̄
(2)
〉

= ρyzσP
{
F̃1C

2(t)− F̃2C(t)− ρszσF̃3C(t)B̄(t)
}
B(t)V (0)

+ ρsyP
2C(t)

{
F̃4C

2(t)− F̃5C(t)− ρszσF̃6C(t)B̄(t)
}
V (0),

where the group parameters F̃i are given by (38). Then it follows from (55)
that V̄ (1) satisfies the following PDE

Lt,x,z
(
µ̄, µ̄

)
V̄ (1) = ĀV̄ (0), (58)

where

Ā =zρyzσP
{
−F̃1C

2(t) + F̃2C(t) + ρszσF̃3C(t)B̄(t)
}
B̄(t)

+ zρsyP
2C(t)

{
−F̃4C

2(t) + F̃5C(t) + ρszσF̃6C(t)B̄(t)
}
.

(59)

From the expansion (34), we have the terminal condition

V̄ (1)(T, x, z) = 0. (60)

We observe that the PDE (58) has the same form of the PDE (28) satisfied by
V (1). Therefore, V̄ (1) can be derived in an explicit form similar to V (1) given
in Theorem 2.2. With similar proof, we can show that V̄ (1) is given by (43).

Finally, using the fact that D1V̄
(0) = −D2V̄

(0) and (43), π̄∗(1) in (54) can
be simplified as (36). The proof is complete. �

Remark 3. The principal terms π̄∗(0) and π̄∗(1) of the asymptotic approximation
for the practical suboptimal strategy π̄∗ are of similar forms of π∗(0) and π∗(1)

respectively given in (31) and (32), without that the expressions for π̄∗(0) and
π̄∗(1) do not depend on y.
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