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EQUIVALENCE BETWEEN SOME ITERATIVE SCHEMES
FOR GENERALIZED ¢-WEAK CONTRACTION MAPPING
IN CAT(0) SPACES

Kyung Soo Kim

ABSTRACT. The aim of this paper is to obtain equivalence of convergence
between some iterative schemes for generalized ¢-weak contraction map-
ping in CAT(0) spaces.

1. Introduction

Let (X, d) be a metric space. A mapping T : X — X is a contraction if there
exists a constant « € (0,1) such that

d(Tz,Ty) < a-d(z,y), Va,ye€X.

A mapping T : X — X is a p-weak contraction if there exists a continu-
ous and nondecreasing function ¢ : [0,00) — [0,00) with ¢~1(0) = {0} and
lim;_, o, ¢(t) = 0o such that

(1) d(Tx, Ty) < d(z,y) — e(d(z,y)), Vz,y€eX.
If X is bounded, then the infinity condition can be omitted.

The concept of the p-weak contraction was introduced by Alber and Guerre-
Delabriere [1] in 1997, who proved the existence of fixed points in Hilbert spaces.
Later Rhoades [20] in 2001, who extended the results of [1] to metric spaces.

Theorem 1.1. ([20]) Let (X,d) be a complete metric space, T : X — X be a
p-weak contractive self-map on X. The T has a unique fized point p in X.

Remark 1. Theorem 1.1 is one of generalizations of the Banach contraction
principle because it takes p(t) = (1—a)t for a € (0, 1), then p-weak contraction
contains contraction as special cases.
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12 K. S. KIM

In 2016, Xue [23] introduced a new contraction type mapping as follows.

Definition 1. ([23]) A mapping T : X — X is a generalized p-weak contraction
if there exists a continuous and nondecreasing function ¢ : [0, 00) — [0, c0) with
©(0) = 0 such that

(2) d(Tz,Ty) < d(z,y) — p(d(Tz,Ty)), Va,yeX
holds.

We notice immediately that if 7' : X — X is p-weak contraction, then T'
satisfies the following inequality

d(Tz,Ty) < d(z,y) — o(d(Tz,Ty)), Va,yecX.
However, the converse is not true in general.
Example 1. Let X = (—o00,+00) be endowed with the Euclidean metric
d(z,y) = |z — y| and let Tz = 2z for each z € X. Define ¢(t) : [0,400) —

[0,+00) by ¢(t) = 3t. Then T satisfies (2), but T does not satisfy inequality
(1). Indeed,

2 2

O
<lo—yl-2- 2yl
ST mgglE Ty
=d(z,y) — p(d(Tx,Ty))

and
2 2
d(Tz,Ty) = ‘533 — 5y‘

> o~ y| - 2z — yl
3
=d(z,y) — p(d(z,y))
for all x,y € X.

Example 2. ([23]) Let X = [0, +00) be endowed by d(z,y) = |x — y| and let
Tx = & for each # € X. Define ¢ : [0, +00) — [0, +00) by p(t) = 1% Then

14+x
T Y |z — 1y
d(Tx, Ty) = — =
T2 Ty) L+x 1+y‘ o019
‘.’L‘—y| :| _ |_ ‘$—y|2
T 14|z -y L+ ]z -yl

= d(z,y) — p(d(z,y))
holds for all z,y € X. So T is a ¢-weak contraction. However T is not a
contraction.
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Remark 2. The above examples show that the class of generalized ¢-weak con-
tractions properly includes the class of p-weak contractions and the class of
p-weak contractions properly includes the class of contractions.

One of the most interesting aspects of metric fixed point theory is to extend a
linear version of known result to the nonlinear case in metric spaces. To achieve
this, Takahashi [22] introduced a convex structure in a metric space (X,d). A
mapping W : X x X x [0,1] = X is a convez structure in X if

d(u, W(z,y,\)) < Ad(u,z) + (1 — N)d(u,y)

for all z,y € X and A € [0,1]. A metric space with a convex structure W
is known as a convex metric space which denoted by (X,d, W). A nonempty
subset K of a convex metric space is said to be conver if

W(x,y,\) € K

for all z,y € K and X € [0,1]. In fact, every normed linear space and its convex
subsets are convex metric spaces but the converse is not true, in general (see,

[22]).

Example 3. ([13]) Let X = {(x1,22) € R* : 21 > 0,22 > 0}. For all z =
(x1,22), ¥y = (y1,92) € X and A € [0,1]. We define a mapping W : X x X X
[0,1] = X by

A 11—\
W(z,y,\) = (/\x1 + (1 =Ny, 2122 + ( )9192)

Azy 4 (1= Ny
and define a metric d: X x X — [0,00) by

d(z,y) = |x1 — y1| + |T122 — Y192].

Then we can show that (X,d, W) is a convex metric space but not a normed
linear space.

A metric space X is a CAT'(0) space. This term is due to M. Gromov [9] and
it is an acronym for E. Cartan, A.D. Aleksandrov and V.A. Toponogov. If X is
geodesically connected, and if every geodesic triangle in X is at least as ‘thin’
as its comparison triangle in the Euclidean plane(see, e.g., [4], p.159). Tt is well
known that any complete, simply connected Riemannian manifold nonpositive
sectional curvature is a CAT(0) space. The precise definition is given below.
For a thorough discussion of these spaces and of the fundamental role they play
in various branches of mathematics, see Bridson and Haefliger [4] or Burago et
al. [5].

Let (X,d) be a metric space. A geodesic path joining z € X toy € X
(or, more briefly, a geodesic from x to y) is a mapping ¢ from a closed interval
[0,{] C R to X such that ¢(0) = z,¢(l) = y, and d(c(t),c(t')) = [t — t'| for all
t,t’ € [0,1]. In particular, ¢ is an isometry and d(z,y) = [. The image « of ¢ is
called a geodesic (or, metric) segment joining 2 and y. When it is unique, this
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geodesic is denoted by [z,y]. The space (X, d) is said to be a geodesic space if
every two points of X are joined by a geodesic, and X is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each z,y € X. A
subset Y C X is said to be convex if Y includes every geodesic segment joining
any two of its points.

A geodesic triangle \(z1, 2, 23) is a geodesic metric space (X, d) consists of
three points 1, 22,25 € X (the vertices of A) and a geodesic segment between
each pair of vertices (the edges of A). A comparison triangle for the geodesic
triangle A(x1, x2,x3) in (X, d) is a triangle A(z1, 2o, 23) = A(&, &, 73) in R?
such that dp:(z;, 7;) = d(zi,x;) for 4,5 € {1,2,3}. Such a triangle always
exists(see, [4]).

A geodesic metric space is said to be a CAT'(0) space if all geodesic triangles
of appropriate size satisfy the following C AT (0) comparison axiom.

Let A be a geodesic triangle in X and let A ¢ R? be a comparison
triangle for A. Then A is said to satisfy the CAT(0) inequality if for
all x,y € A and all comparison points Z, 5 € A,

d(z,y) < d(z,9).

Complete CAT'(0) spaces are often called Hadamard spaces(see, [15]). If
x,y1,y2 are points of a CAT(0) space and if yg is the midpoint of the segment
[y1,y2], which we will denote by @, then the C'AT'(0) inequality implies

3 1 1 1
& (0258 < Sl + 5w - 1)

This inequality is the (CN) inequality of Bruhat and Tits [3]. In fact, a geodesic
space is a CAT(0) space if and only if satisfies the (CN) inequality (cf. [4],
p.163). The above inequality has been extended by [7] as

d*(z,az @ (1 —a)y)

C *
< ad(z,2) + (1 - a)d*(2,y) — a(l - a)d*(z,y), (e

for any a € [0,1] and z,y, 2 € X.

Let us recall that a geodesic metric space is a CAT(0) space if and only if
it satisfies the (CN) inequality(see, [4], p.163). Moreover, if X is a CAT(0)
metric space and z,y € X, then for any « € [0,1], there exists a unique point
ar ® (1 — a)y € [z,y] such that

(3) d(z,az @ (1 — a)y) < ad(z,z) + (1 — a)d(z,y)

for any z € X and [z,y] = {axz ® (1 — @)y : a € [0,1]}. In view of the above
inequality, C AT'(0) space have Takahashi’s convex structure

W(z,y,a) =az® (1 —a)y.
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It is easy to see that for any z,y € X and A € [0, 1],

d(z, (1= Nz @ \y) = Md(z,y),

d(y, (L= Nz & Ay) = (1L = Nd(z,y).
As a consequence,

1-260.-y=uz,

1I-XNzddx=Xx®(l— Nz ==zx.
Moreover, a subset K of CAT(0) space X is convex if for any z,y € K, we have
[z,y] C K.

The aim of this paper is to obtain equivalence of convergence between some
iterative schemes for generalized p-weak contraction mapping in C AT(0) spaces.

2. Preliminaries

Definition 2. Let K be a nonempty convex subset of a CAT(0) space X,
T : K — K be a self mapping. Let {a,},{8,} and {7, } are three sequences in
[0, 1) satisfying some conditions.

(1) The Picard iterative scheme (cf., [19]) is defined by wy € K,

Wpt1 = Tw,, n>0. (P)
(2) The Mann iterative scheme (cf., [18]) is defined by ug € K,
Unt1 = (1 — ap)u, ® apTu,, n>0. (M)

(3) The Ishikawa iterative scheme (cf., [10]) is defined by rg € K,
{ Tpt1 = (1 — an)rn @ anTsy, o
Sn=(1=Bp)rn ® BnTr,, n>0.
(4) The three-step iterative scheme (cf., [11], [12]) is defined by x¢ € K,
Tny1 = (1 — an)xyn ® anTyn,
yn = (1= Bn)xn B BT zn, (TH)
=1 =)z, ®WmTx,, n>0.
Another iterative schemes and other some results in C'AT'(0) space have been
studied extensively by various authors(see e.g. [6], [8], [14], [16], [17], [21]).

Xue [23] proved the following very intersting fixed point theorem in complete
metric space.

Theorem 2.1. ([23]) Let (X,d) be a complete metric space and let T : X — X
be a generalized p-weak contraction. Then the Picard iterative scheme ([19])
Tnt1 = T,

converges to the unique fized point.
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Theorem 2.2. Let T be a generalized p-weak contractive self mapping of a
closed convex subset K of a Banach space X. Then the Picard iterative scheme

Tp4+1 = Tz,
converges strongly to the fized point p with the following error estimate:
|zns1 = pll < @7 (@ (|21 = pll = 1)),

where @ is defined by the antiderivative

@(t)/(pzt)dt, B(0) = 0

and 1 is the inverse of ®.

Proof. The proof is similar as [20](Theorem 2). However, for completeness, we
give a sketch of the proof. We can obtain convergence follows from Theorem
2.1. To establish the error estimete, from (2) with A, = ||z, — pl|,

Ant1 = |Zny1 — pll = | Tzn — pl|
< lzn —pll = (l|znt+1 —pl)
- )\n - @()\n-ﬁ—l)v
so, we have
(4) 90()‘n+1) S )\n - )\n+1~
Thus
A
" 1 )\n - )\n—i-l
D(A,) — DN, :/ dt =
() = 20n1) Ass 2(1) o)

for some A\, 11 < p,, < Ap. Since ¢ is nondecreasing, from (4),

)\n — )\’I’LJrl > >\n - )\n+1

D(A,) — P(Npg1) = > > 1.
) = ) = =) 2 0w
Thus
D(Apr1) SPN) —1< - <D(Ny) — .
This completes the proof of Theorem 2.2. O

Lemma 2.3. ([2]) Let {a,} and {b,} be sequence of nonnegative numbers and
0 < g <1 such that for alln >0,

Gp+1 = qapn + by

If lim, o b, =0, then lim, . a, = 0.
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3. Main Result

Theorem 3.1. Let (X,d) be a complete CAT(0) space and K be a nonempty
bounded convex subset of X. LetT : K — K be a generalized p-weak contraction
mapping. Let {w,} and {x,} be the Picard and three step iterative scheme
defined by (P) and (TH) respectively and satisfying the following conditions:

(1) O‘naﬂﬂnr}/n S [O, 1)7 Vn Z 0,‘
(il) limy, oo ap = 1, limy, o0 B, = 0;

(i) 0% anfBnyn = .
If wg = x¢, then the following statements are equivalent:

(1) the Picard iterative scheme {w,} converegs top € F(T);
(2) the three step iterative scheme {x,} converegs to p € F(T).

Furthermore, p is the unique fized point of T.

Proof. From Theorem 2.1 and Theorem 2.2, T has a fixed point. Take it p.
From (3) and the generalized p-weak contraction of T, we have

d('zmp) = d(<1 - ’Yn)xn S2] 'YnTwmp>
< (1 - 'Yn)d(xnap) + ’Ynd(Txmp)
(5) < (1= n)d(@n, p) + nld(@n, p) — o(d(Tn,p))]

d(ynap) = d((]- - 5n)1’n 2] ﬁnTvap)
< (1 - Bn)d(l‘nap) + ﬂnd(TZnap)
(6) < (1 - Bn)d(xn;p) + ﬁn[d(znvp) - @(d(TZn’p))]

From (5) and (6), we have

d(Tpy1,p) = d((1 — an)rn © anTYn, p)
< (1 —ap)d(xn,p) + nd(Tyn,p)
< (1= ap)d(zn, p) + anld(yn, p) — ¢(d(Tyn, p))]
< (1—ap)d(zn,p)
+ an[(1 = Bn)d(2n, p) + Buid(2n,p) — ©(d(Tzn,p))}]

— an(d(Tyn,p))

< (1 - an)d(xnvp) + O‘n(l - Bn)d(xmp)
+ anBn[(1 = )d(@n, p) + Wld(@n, p) — @(d(Twy, p))}]
— o Bnp(d(Tzn, p)) — ane(d(Tyn, p))
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= d(zn,p) — anBnYnP(d(Tn, p)) — anBnp(d(Tzn, p))
— an@(d(Tyn,p))
(7) = d(2n,p) — anBuYne(d(Tzn, p))
< d(xn,p).

Therefore {d(z,,p)} is a nonnegative nonincreasing sequence, which converges
to a limit L > 0. Suppose that L > 0. For notational convenience, let A\, =
d(xy,p). Since {d(zn,p)} is a nonincreasing sequence, we have A, > L, i.e.,

(8) d(@n,p) = d(zn41,p) = -+ 2L, VneN.
Most of all, we want to show that
d(Tz,,p) > L, VneN.
It is sufficient to show that there exists nq € N such that
d(xp,,p) < d(Txn,p), n>1.
Suppose that d(Tx,,p) < L. Then
(9) d(xpn,,p) > d(Txy,p), Vng €N.

Since lim,, o0 d(7p,p) = L and (9), for § = L — d(Tz,,p) > 0, there exists
N € N with d(zn,p) < d(Tz,,p) + § such that

‘d(xmp) - L‘ < ‘L - d(T:Cmp)‘ + |d(T:En,p) - d(xn,p)|
=L —d(Tzp,p) + d(@n,p) — d(TTn,p)
< S +dlaw,p) — d(Twa,p)

<§+§<5
2 4

for n > N. On the other hand, from (9), we obtain

1
d(an.p) < d(Tn,p) + 7 = d(Te,,p) + 5(L — (T2, p))
_ 1
2

< L+ d(o.p),

(L+d(Tzn,p))

i.€.,
d(mN,p) < L.

This is a contradiction to (8). Therefore

(10) d(Txp,p) > L.
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From (7), (8) and (10), it follows that, for any fixed integer N € N,

Z anﬂnlyn@( ) Z QB Ynp ( (Txnvp))
n=N

o
Z xn,p $n+17p))
n=

dev )

This is a contradiction to the condition (iii). Therefore

lim d(x,,p) =L =0.

n—oo

For each n > 0,

d(zn, wn) = d((1 = vp)xn & YT Ty, wy)
< (1 = vyp)d(@n, wn) + Ynd(T Ty, wy)
< (1 —yp)d(zn, wn) + Yul[d(Txn, Twy,) + d(wpt1, wn))
< (1= )d(Tn, wn) + Ynld(@n, wn) — P(d(TT0, Wnt1))]
+ Ynd(Wpt1, wy)
(11) = d(Tn, wn) — WP(d(TTp, Wnt1)) + Ynd(Wnt1, W)

and

A(Yn, wn) = d((1 — Bp)zn ® BaTzn, wn)
< (1= Bn)d(zn, wn) + Brd(Tzn, wn)
< (1= Bp)d(zn,wn) + Bud(Tzn, Twy) + d(wpy1, wy)]
< (1= Bn)d(@n, wn) + Buld(zn, wn) — P(d(T2, Wnt1))]
(12) + Brd(wni1,wn).

Substitute (11) to (12), we have

Ad(Yns wn) < (1= Bn)d(Tn, wn)
+ Buld(@n, wn) = p(d(TTn, wn 1)) + Ynd(Wny1, wn)]
— Bne(d(T 20, wnt1)) + Brnd(wWng1, wy)
= d(Zn, Wn) — Pn [@(d(T'Zm Wp1)) + Ynp(d(Txy, wn+1))]
(13) + Bn(1 4+ vn)d(wnt1, wn).

19
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From (13), we obtain
A(Xpp1, Wnt1) = d((1 — an)Tn ® @nTyn, Twy,)
< (1 = ap)d(xn, Twy) + and(Tyn, Twy,)
< (1 = an)d(@n, Twn) + anld(Yn, wn) — P(d(TYn, wni1))]
< (1 = an)d(@n, Twn) + an[d(zn, wn) = Bu{p(d(T2n, wnt1))
+ V(AT T, wnt1))} + B (1 + yn)d(wnt1, wy)]
— anp(d(Tyn, Wn1))
= apd(Tn, wy) + (1 — ap)d(zn, Twy) — an[Brp(d(Tzn, wnt1))
+ B (d(T T, wny1)) + @(d(Tyn, Wns1))]
+ B (1 + Y )d(Wpt1, wn)
< qd(xp,wp) + (1 — ap)d(x,, Twy,)
(14) + anBn (1 + vn)d(Wnt1, wn),

where ¢ = max{a, : n > 1}. By Lemma 2.3 and conditions (i),(ii), we know
that

HILH;O d(xp,w,) = 0.

If w, — p € F(T) as n — oo, we have
d(xp,p) < d(zp,wp) + d(wy,p) =0
asn — oo. lf &, —» p € F(T) as n — oo, we have
d(wp,p) < d(wp, xy) + d(xn,p) = 0

as n — oo. Therefore, the equivalence between the statement (1) and (2) was
proved. Finally, we show that p € K is the unique fixed point of T. In fact, let
p,q € K be two fixed point of T'. Since T is a generalized p-weak contraction
mapping, we have

d(p,q) = d(Tp,Tq)
<d(p,q) — ¢(d(Tp, Tq))
= d(p,q) — ¢(d(p, q))-
This implies

e(d(p.q)) = 0.
From the property of o, ¢~1(0) = {0}, we have
d(p,q) =0,
i.e., p = q. This completes the proof. O

Corollary 3.2. Let (X,d) be a complete CAT(0) space and K be a nonempty
bounded convex subset of X. LetT : K — K be a generalized p-weak contraction
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mapping. Let {w,} and {r,} be the Picard and Ishikawa iterative scheme defined
by (P) and (L) respectively and satisfying the following conditions:

(i) an,Br €10,1), Vn>0;
(i) limy, oo ap = 1, limy, o0 B, = 0;
(iii) Y07, anfy = 00.
If wg = rg, then the following statements are equivalent:

(1) the Picard iterative scheme {wy} converegs to p € F(T);
(2) the Ishikawa iterative scheme {r,} converegs to p € F(T).

Furthermore, p is the unique fixed point of T'.

Corollary 3.3. Let (X,d) be a complete CAT(0) space and K be a nonempty
bounded convex subset of X. LetT : K — K be a generalized p-weak contraction
mapping. Let {w,} and {u,} be the Picard and Mann iterative scheme defined
by (P) and (M) respectively and satisfying the following conditions:

(i) a, €[0,1), Vn>0;
(i) limy, oo ap = 1.
If wg = ug, then the following statements are equivalent:

(1) the Picard iterative scheme {wy} converegs to p € F(T);
(2) the Mann iterative scheme {u,} converegs to p € F(T).

Furthermore, p is the unique fixed point of T'.
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