
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2017.17.1.015 ISSN(Online) 2233-4866

Manuscript received Oct. 16, 2016; accepted Feb. 3, 2017
Sam H. Noh is with the school of Electrical and Computer
Engineering, UNIST
E-mail : samhnoh@unist.ac.kr

Divided Disk Cache and SSD FTL for Improving
Performance in Storage

Jung Kyu Park, Jun-yong Lee, and Sam H. Noh*

Abstract—Although there are many efficient
techniques to minimize the speed gap between
processor and the memory, it remains a bottleneck for
various commercial implementations. Since
secondary memory technologies are much slower than
main memory, it is challenging to match memory
speed to the processor. Usually, hard disk drives
include semiconductor caches to improve their
performance. A hit in the disk cache eliminates the
mechanical seek time and rotational latency. To
further improve performance a divided disk cache,
subdivided between metadata and data, has been
proposed previously. We propose a new algorithm to
apply the SSD that is flash memory-based solid state
drive by applying FTL. First, this paper evaluates the
performance of such a disk cache via simulations
using DiskSim. Then, we perform an experiment to
evaluate the performance of the proposed algorithm.

Index Terms—Cache, hard disk, SSD, simulation,
DiskSim

I. INTRODUCTION

As computer processor speeds continue to increase,
the challenge to ensure timely data supply also continues
to increase. Processor speed increases at approximately
60% every year, whereas memory speed is growing at
approximately 10% [9]. One major bottleneck in meeting
the increased processor demand is the speed data and

instructions are supplied from the storage devices.
Although high speed cache systems and various other
techniques have improved to fill the performance gap,
secondary storage access speed remains a concern,
especially for big data.

Access times for secondary devices are significantly
higher than main memory, as shown in Table 1. Hard
disk access is 105 slower than the main memory. As the
gap increases toward 6 orders of magnitude, further
optimization techniques are required. Even a small disk
cache improvement could significantly reduce response
time [11], substantially improving overall response time.
Hospodor provides the total access time when the
required data is not present in the disk cache and the
physical disk must be accessed [6].

For simplicity, we consider cache transfer time to be
equal that for a magnetic disk, although the latter is much
higher as it involves rotating the physical disk to read
from the sectors [7]. Access time is reduced by a factor
of 100 when there is a cache hit. Many mechanical
techniques have improved actual response over the last
decade via reducing seek time by approximately 8% and
increasing rotational speed by approximately 9%
annually. Data area density improvements by 40%
annually have also assisted, reducing response time by
8% every year. Overall, there has been a 15% yearly
improvement in seek times from improved disk
technology [1, 4].

The disk cache is a buffer in the disk system that holds
recently accessed portions of disk memory. The file
system/database cache represents the logical cache and
the disk cache represents the physical cache. When the
processor makes a request to the disk drive, the OS first
checks the logical cache. A miss at the logical level

16 JUNG KYU PARK et al : DIVIDED DISK CACHE AND SSD FTL FOR IMPROVING PERFORMANCE IN STORAGE

cache results in an I/O request to the physical cache. If a
miss occurs at the physical level cache, then the physical
drive is accessed.

This paper focuses on the physical cache [1], i.e., the
disk cache of the disk drive system. Every disk cache hit
results in substantially reduced (1–4 ms) I/O than would
be required to access the disk itself (10–100 ms) [16].
We evaluate the performance of a disk cache divided into
data and metadata regions, where metadata represents
only a small portion of the memory, but is accessed very
frequently [2, 5, 6].

Section 2 presents related works. Section 3 explains
split percentage design and Section 4 discusses the
implementation and evaluation methodology. Section 5
presents the simulation results. Section 6 concludes the
paper and discusses future work.

II. RELATED WORK

We assess related research in the area of disk cache
systems, and since metadata is a key aspect of the
proposed system, we also discuss some optimizations in
the field of metadata access.

1. Optimization Techniques for Hard Disk Cache

Yang and Hu proposed a novel disk storage technique

called disk caching disk (DCD) to improve disk cache
I/O performance [18]. They used a small log disk, or
cache-disk, as a secondary disk cache to optimize write
performance. This exploited access speed differences
between the normal and cache disks. The latter has faster
access even though both have the same physical
characteristics because of the different data units used
and differences in the way the data was accessed. Data
transfer rate in units of tracks is almost eight times faster
than in unit of blocks. Therefore, the log buffer was used
as an extension to the RAM buffer to cache file changes
and destage this to the data disk when the system was
idle. All the small and random writes were first buffered
into the RAM cache, and then written in a single data
transfer to the cache disk when it was idle. Hence, the
RAM buffer was cleared for more data transfer. When
the disk was idle, the destage operation between the
cache to disk and data disk was performed. Experiment
tests with three traces (hplajw, cello, and snake), showed

the DCD technique could improve write performance at
the secondary storage level by one to two orders of
magnitude. This technique involves the use of an
additional hardware element to obtain the performance
improvement.

2. Optimization Techniques for Metadata Access

Pen Gu et al. argued that existing data prefetching

algorithms did not consider group prefetching and have
higher computational complexity [5]. These techniques
do not work with metadata access. Hence, they proposed
an accurate and distributed metadata oriented prefetching
algorithm. They proposed a weighted graph based
technique for prefetching. Experiments showed the
proposed algorithm provided considerable improvements
for metadata access on the client side, reducing response
time by 67% on average compared to LRU and other
prefetching algorithms.

Hong evaluated the performance impact from using
micro electromechanical systems (MEMS) as metadata
storage and disk cache [6]. MEMS have seek-times 10–
20 times faster than hard drives, storage density 10 times
higher, and also lower power consumption. Simulations
for MEMS used as dedicated metadata storage show a
potential improvement of 28–46% in system
performance for user workload, depending on how much
metadata traffic is incorporated in the workload. He also
discussed how using MEMS as a disk write buffer could
improve system performance by a factor of 3.3–8.2, and
provide better consistency on system performance than a
disk system by a factor of 2.4 to 5.7.

Scott et al. discussed the importance of efficient
metadata management in large distributed storage
systems [2]. They argued that subtree partitioning and
pure hashing were common techniques for managing
metadata in such systems, but have a bottleneck of high
concurrent access rates. They proposed a Lazy Hybrid
(LH) technique for metadata management that combined
the advantages of the two approaches, while avoiding the
disadvantages.

One common conclusion from these researchers was
that metadata is relatively small, but accessed very
frequently. This forms the basis for our design.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 17

3. Divided Disk Cache into Data and Metadata

Baskiyar et al. discussed split cache, or divided disk

cache (DDC), architecture, where the data region of the
cache is split into data and metadata [1]. In this
theoretical paper, DDC was analyzed with the aim to
improve the read miss ratio. They claimed the technique
would reduce interference between data and metadata,
and the effective read miss ratio could be improved by
20%, which would improve response time by 16%. The
major points of their paper were:

Metadata accounts for only a small portion of the data
but is accessed very frequently.

They used the Linux EXT2 file system to calculate
metadata size, and provided data and metadata
relationships.

Metadata account for 4.66% of an 8 kB file and
3.156% of a 12 kB file.

4. SSD

Flash memory-based solid state drive (SSD) has

excellent I/O performance with low power consumption.
Due to the limitation of NAND flash, the Flash
Translation Layer (FTL) is implemented in the SSD
controller to emulate block device such as hard drive.
The FTL performs a garbage collection (GC) process to
reclaim free space [19]. Servers use SSD as a storage
device to store persistent data in big data environment.
However, many devices in big data and Internet of
Things (IoT) environment send a data frequently to
server and makes a lot of small writes on the SSD. As a
result, GC process performs internal data movement
between the NAND flash block so that I/O performance
is decreased [18].

For this reason, in this paper, we propose new FTL
scheme that is based on page mapping FTL. Our
experimental results show that our proposed method has
11% better results than the conventional page mapping
FTL.

III. OPTIMUM DIVIDED CACHE DESIGN

We consider various research techniques in the area of
disk cache. Also, since metadata and its access patterns
are important for our research, we discuss optimization

of metadata access.
The divided cache design used here is similar to [1].

From Hsu and Smith [9, 10], the cache system becomes
effective when the cache size reaches 1% of the external
storage space. For example, for a 1 TB hard disk, the
disk cache should be 5 GB when the disk is half full.

However, it is generally impractical to provide a cache
of this magnitude. Therefore, we split the cache into data
and metadata regions, so that metadata cache amounts to
at least 1% of the metadata in the disk drive. Consider
the case where we have a cache of 4 kB, as shown in Fig.
1(a). The disk is accessed twice to retrieve a 4 kB file
and 2 kB metadata file. Metadata is first retrieved from
the disk and stored in the cache Fig. 1(b), and then the
data is retrieved from the disk and brought into the data
cache. Since the data is 4 kB, it replaces the metadata in
the cache Fig. 1(c).

When the same file is requested again, the metadata
for the file is not present in the cache, and hence there is
a cache miss. Metadata is now retrieved from the disk
and stored in the metadata cache, replacing 2 kB data Fig.
1(d). The cache now contains 2 kB data and 2 kB
metadata, resulting in a hit for half the data.

However, If the cache is divided into data and
metadata regions as shown in Fig. 2(a), each of size 2 kB,
then the metadata does not get a miss in the second
request. This reduces interference between data and
metadata and increases the overall hit ratio.

Some space is removed from the data cache region, so
the number of data hits may reduce. However, since

Fig. 1. Miss rates and composite derivatives for two processes
with conventional cache.

Fig. 2. Miss rates and composite derivatives for two processes
with divided cache.

18 JUNG KYU PARK et al : DIVIDED DISK CACHE AND SSD FTL FOR IMPROVING PERFORMANCE IN STORAGE

metadata is accessed more frequently, the number of
metadata hits increases significantly, compensating for
the reduced data hits [2, 5, 6]. On the other hand,
metadata is relatively small, and metadata cache space
must be allocated carefully. Allocating more space than
required for metadata would reduce performance
significantly, as this increased metadata cache space is at
the expense of data cache space.

Fig. 3 explains the motivation behind varying the split
percentage. Fig. 3(a) shows the cache divided in the
middle, i.e., 50% for data and 50% for metadata cache
regions. But metadata is smaller than data, and so there is
lot of unassigned space within the metadata cache region.
Since this space is taken from the data cache region,
there is less space for data in the cache, which increases
data misses, and degrades the system. Fig. 3(b) is a more
reasonable split ratio, where metadata cache occupies
only a small portion of the available cache space. It is
important to identify the optimum split point where
metadata hits exceed the loss in data hits to provide
optimal performance gain. This paper addresses this
issue by evaluating outcomes for a range of relative
metadata and data cache region sizes.

As discussed in [1], requests to appropriate regions
(data requests to the data cache region and metadata
requests to the metadata cache region), are modified at
the OS level, which sends one additional bit of
information. This bit can be read by the disk controller
and the request directed appropriately.

There are a number of tasks required to achieve the
proposed design, as shown in Fig. 4:

Identify the I/O request as read or a write.
Once the I/O type is identified, differentiate between a

data and metadata read.
Once the request type is completely identified, the

request is satisfied by searching for the block numbers in

their respective regions, i.e., if it is a data read request,
then search in the data cache region; whereas if it is a
metadata read request, search in the metadata cache
region.

IV. SECTION BASED PAGE MAPPING FTL

Our goal is to reduce a GC process to improve the I/O
performance of SSD while writing operation is
performed. The write operation in IoT environment has
small size of data that consists of metadata and data that
can be scattered across multiple blocks in an SSD. If
invalidated pages are scattered across multiple blocks
when performing the garbage collection in order to get a
new block in the SSD, additional page copies and block
erases cause a high GC overhead.

To decrease the problem, we propose a section based
page mapping based FTL that divides the SSD into two
sections to store metadata and user data on different
sections. Fig. 5 shows an architecture of proposed FTL
scheme. This method separates metadata and user data so
that data are separately stored in each section based on
block number of data so that GC task can be reduced.

Fig. 3. Data and metadata regions in cache.

Fig. 4. Metadata detection method.

Fig. 5. Architecture of Section based page mapping FTL.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 19

V. EVALUATION

The DDC and Section-based page mapping FTL
discussed above are implemented in the well-known
DiskSim 4.0 simulator [3]. DiskSim is written in C, and
is widely accepted for storage system simulation. Several
experiments were performed, along with benchmark
traces.

1. DiskSim Simulator

DiskSim 4.0 is a well-known simulator developed to

support research in storage subsystems. Disksim includes
modules to simulate disks, intermediate controllers,
buses, device drivers, request schedulers, disk block
caches and disk array data organization. DiskSim has
been successfully validated against various commercial
disk drives with exceptional results [3].

2. Evaluation Traces and Workloads

Experiments were conducted with the hplajw and cello

1999 benchmarks from HP-UX. These traces have I/O
events that include data and metadata access [5]. In
hplajw, write requests (67%) dominate for hplajw,
whereas read requests (63%) dominate for cello
benchmark [18]. Overall, metadata read requests account
for 40% and 10% of all read requests in cello and hplajw,
respectively [12]. We used two full day traces of cello
and a single day trace from hplajw, and evaluated the
system performance with DDC compared to unified
cache.

Various other synthetic traces were generated to
evaluate DDC behavior. There are two important
metadata factors consider in determining the split
effectiveness: the percentage of metadata requests, and
the access pattern. Therefore, we generated synthetic
traces of valid trace format and assigned a few read and
write events as metadata events. Since metadata is
smaller, we assigned only read events that retrieved small
numbers of blocks as metadata reads. From the average
metadata size, block size in the cache, and relative data
and metadata block sizes, we randomly marked records
where access size was less than or equal to 2 blocks as
metadata. For a given cache size, the experiment was
conducted with three different access patterns and the

average value calculated, as shown in Fig. 6. For
example, if there were 10000 records in the trace file, we
randomly selected 4000 records as metadata reads to
provide 40% metadata reads. We created trace files with
metadata content at 20%, 40%, and 60%.

Experiments were conducted with nine cache sizes
(10–16 MB), different read percentages (30–90%),
different metadata percentages (20–60%, as discussed
above), and different metadata-data split percentages
ranging from 10:90 to 90:10. All experiments were
conducted three times, and the average calculated. Thus,
there were 9 × 7 × 3 × 5 × 3 = 2835 data points covering
all the combinations.

For a particular trace file, all the block numbers with ≤
2 blocks requested were collected initially. For a
particular random number, the request at that line in the
trace file was checked to see if the block number had
been collected previously, and if so it was considered to
be a metadata access. This process was conducted three
times with the same trace files but different random seeds.
Finally, the average hit ratio was calculated. Thus, we
accounted for metadata percentages in the trace file and
also different access patterns. This experiment was
intended to mimic metadata access patterns similar to the
various test benchmarks. The entire trace file was
spanned to obtain the particular percentage of metadata
access.

VI. RESULTS

DDC evaluation was performed as discussed above,
and in general, as the metadata region increased, the hit
ratio reduced, as expected (discussed above). The read

Fig. 6. Hit ratio with varying cache size for hplajw.

20 JUNG KYU PARK et al : DIVIDED DISK CACHE AND SSD FTL FOR IMPROVING PERFORMANCE IN STORAGE

ratio also plays a critical role in optimizing the hit ratio.
DDC provides improvement only when the percentage of
reads in the trace file was above 70%. For all other cases,
there was very little or no optimization. Hence DDC
improves hit ratio for read intensive applications, and
when the data cache region is above 50%.

1. Standard Benchmarks

Fig. 6 and 7 show Cello-1990 traces (predominantly

read access), which were taken over two days. Compared
to conventional cache, the hit ratio improvement rises to
6% with increasing metadata cache size. Note that the
maximum improvement (6%) occurs at approximately
16000 kB (0.015 GB), or 0.17% of the disk size (9.1 GB).
If the disk were considered half full, this is
approximately 1/3% (0.33%) of the used disk space.
Thus, DDC performance with moderate size caches is
more beneficial and cost-effective than a 1% unified
cache.

2. Synthetic Trace Files and Random Access Methods

Fig. 7 shows that DDC will produce almost same hit

ratio as conventional cache when the data to metadata
region ratio is 80:20. But when the metadata region is
reduced, there is an improvement in overall hit ratio over
conventional cache. Fig. 8 shows the DDC is effective
when the number of metadata requests in the input trace
is high. As the number of metadata accesses increase, the
hit ratio for metadata also increases. Fig. 9, shows
significant benefit in hit ratio for DDC when the input
trace read requests exceed 60%. Furthermore, DDC does

not hinder performance for write intensive applications,
with read percentages over 30%.

3. Evaluation of Section based Page Mapping FTL

We utilize the DiskSim simulation environment that is

integrated with the FTL simulator for experiments. A few
modifications were done in DiskSim source code to
implement the section based FTL design. Major code
changes were done in flash.c, pagemap.c and
ssd_interface.c [17]. To evaluate the section based page
mapping FTL, we used 2 traces that are the MSR
Cambridge traces from SNIA and real block trace taken
from IoT server HDD. First trace has 80% read and 15%
write and last trace has 15% read and 85% write. Fig. 10
shows that block erase is 1.4% less than the page
mapping FTL method. And Fig. 11 shows that the
section based FTL reduced GC counts approximately
11% compared to conventional page mapping FTL.

Fig. 7. Hit ratio with varying metadata cache regions for
hplajw.

Fig. 8. Average hit ratio with varying metadata percentage in
input for Synthetic trace with Validate trace format and random
access.

Fig. 9. Average Hit Ratio with varying read percentage in input
for Synthetic trace with Validate trace format and random
access.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 21

VII. CONCLUSIONS

Significant improvements can be achieved for DDC
when the percentage of reads in an application exceeds
60%, with metadata reads being at least 40% of the
overall reads. For this condition, there is an optimum
point where the number of total hits in DDC is more than
for unified cache. This reduces traffic to the physical disk
and hence provides greater response time and higher
processing speeds when the external storage is involved
in I/O operations. Thus, the processor can be kept busier
and the bottleneck between processor and secondary
storage system is significantly reduced.

We conclude that dividing the disk cache into data and
metadata regions can yield positive results when the split
ratio is between 70:30 to 90:10, with the latter being
preferred, as this would not significantly reduce the hit
ratio for data reads, but provides higher overall hit ratio.

Finally, we proposed the section based page mapping
FTL scheme that is an appropriate solution for big data
and IoT environment that have small data writing. This
project is a work in progress. We plan to consider further
dividing the SSD into several section. We also plan to
conduct experiments using large scale and real workloads.

ACKNOWLEDGMENTS

This work was supported by Institute for Information
& communications Technology Promotion(IITP) grant
funded by the Korea government(MSIP) (No.R0190-15-
2012, High Performance Big Data Analytics Platform
Performance Acceleration Technologies Development).

REFERENCES

[1] S. Baskiyar and C. Wang, “Split disk-cache
architecture to reduce read miss ratio,” in Proc. of
the 9th International PDCN, pp.249-254, 2010.

[2] S. A. Brandt, E. L Miller, D. D. Long, and L. Xue,
“Efficient metadata management in large
distributed storage systems,” in Proc. of MSST,
pp.290-298. 2003.

[3] J. S Bucy, J. Schindler, S. W Schlosser, and G. R
Ganger, “The disksim simulation environment
version 4.0 reference manual (cmu-pdl-08-101),”
Parallel Data Laboratory, 2008.

[4] P. Gu, J. Wang, Y. Zhu, H. Jiang, and P. Shang, “A
novel weighted graph based grouping algorithm for
metadata prefetching,” IEEE Transaction
computers., Vol.59, No.1, pp.1-15, 2010.

[5] B. Hong, “Exploring the usage of mems-based
storage as metadata storage and disk cache in
storage hierarchy,” Technical Reports, University
of California at Santa Cruz, 2003.

[6] A. Hospodor, “Hit ratio of caching disk buffers,” in
Proc. of 37th IEEE Computer Society Int. Conf.,
pp.427-432, 1992.

[7] W. W. Hsu and A. J. Smith, “Characteristics of i/o
traffic in personal computer and server workloads,”
IBM Journal of Research and Development,
Vol.42m No.2, pp.347-372, 2004.

[8] W. W. Hsu and A. J. Smith, “The performance
impact of i/o optimizations and disk improve-
ments,” IBM Journal of Research and Development,
Vol.48, No.2, pp.255-289, 2004.

[9] W. W. Hsu and A. J. Smith, “The real effect of I/O
optimizations and disk improvements,” Technical
Reports, Computer Science Division, University of
California, 2003.

[10] C. Ruemmler and J. Wilkes, “Unix disk access
patterns,” In Proc. USENIX Technical Conference,
pp.405-420, 1993,

Fig. 10. Block Erase Count.

Fig. 11. GC Page Write Count.

22 JUNG KYU PARK et al : DIVIDED DISK CACHE AND SSD FTL FOR IMPROVING PERFORMANCE IN STORAGE

[11] A. J. Smith, “Disk cache miss ratio analysis and
design considerations,” ACM TOCS, Vol.3, No.3,
pp.161-203. 1985.

[12] H. S. Stone, J. Turek, and J. L. Wolf, “Optimal
partitioning of cache memory,” IEEE TC, Vol.41,
No.9, pp.1054-1068, 1992.

[13] A. S Tanenbaum, J. N. Herder and H. Bos, “File
size distribution on unix systems-then and now,”
Operating Systems Review, Vol.40, No.1, pp.100-
104, 2006.

[14] D. Thiebaut, H. S. Stone and J. L. Wolf,
“Improving disk cache hit-ratios through cache
partitioning,” IEEE TC, Vol.41, No.6, pp.665-676,
1992.

[15] Q. Yang and Y. Hu, “DCD-disk caching disk: A
new approach for boosting i/o performance,” 23rd
Annual International Symposium on Computer
Architecture, pp.169, 1996.

[16] Y. Zhu and Y. Hu, “Disk built-in caches:
evaluation on system performance,” In Proc.
MASCOTS, pp.306-313. 2003.

[17] A simulator for various FTL schemes. http://csl.
cse.psu.edu/?q=node/322, 2008.

[18] J. Lee, S. Park, M. Ryu and S. Kang, “Performance
Evaluation of the SSD-Based Swap System for Big
Data Processing,” In Proc. TrustCom, 2014.

[19] A. Gupta, Y. Kim and B. Urgaonkar, “DFTL: a
flash translation layer employing demand-based se-
lective caching of pagelevel address mappings,” In
Proc. ASPLOS, 2009.

[20] J. Kang, J. Hyun, H. Maeng and S. Cho, “The
Multi-streamed Solid-State Drive,” In Proc.
HotStorage, 2014.

Jung Kyu Park received the M.S.
and Ph.D. degrees in computer
engineering from Hongik University
in 2002 and 2013, respectively. He
has been a research professor at the
Dankook University since 2014. In
2016, he joined the Research scientist

of School of Electrical and Computer Engineering at the
UNIST. His research interests include operating system,
new memory, embedded system and robotics theory and
its application.

Jun-yong Lee was born in Seoul,
Korea. He received the B.E. degree
in computer engineering from Seoul
National University, Seoul, Korea in
1986. He received the M.E and Ph.D.
degrees in computer engineering
from the University of Minnesota in

1988 and 1996, respectively. After working as a research
staff member in IBM (from 1996), he has been a
professor at the Department of Computer Engineering,
Hongik University, Seoul, Korea. He also has been a
visiting professor at the Towson University in Maryland
in 2004. His research interest includes computer
architecture, embedded systems, computer security and
others. He is a member of KISS, KSCI, IEEK, and KSTC.
His interests include computer system architecture, logic
synthesis, high-speed memory system and so on.

Sam H. Noh received the BS degree
in computer engineering from the
Seoul National University, Seoul,
Korea, in 1986, and the PhD degree
from the Department of Computer
Science, University of Maryland,
College Park, MD, in 1993. He held

a visiting faculty position at the George Washington
University, Washington, DC, from 1993 to 1994 before
joining Hongik University, Seoul, Korea, where he is
now a professor in the School of Computer and
Information Engineering. From August 2001 to August
2002, he was also a visiting associate professor with the
University of Maryland Institute of Advanced Computer
Studies (UMIACS), College Park, MD. He has served as
General Chair, Program Chair, and Program Committee
Member on a number of technical conferences and
workshops including the ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), IEEE International
Conference on Parallel and Distributed Systems
(ICPADS), USENIX Conference on File and Storage
Technologies (FAST), and International World Wide Web
(WWW) Conference. He also serves as Associate Editor
of the ACM Transactions on Storage. His current
research interests include operating system issues
pertaining to embedded/computer systems. He is a
member of the ACM, IEEE, USENIX, and KIISE.

