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Abstract—This paper presents an optimized adoption 
of NVM for the storage system of heterogeneous 
applications. Our analysis shows that a bulk of I/O 
does not happen on a single storage partition, but it is 
varied significantly for different application 
categories. In particular, journaling I/O accounts for 
a dominant portion of total I/O in DB applications 
like OLTP, whereas swap I/O accounts for a large 
portion of I/O in graph visualization applications, and 
file I/O accounts for a large portion in web browsers 
and multimedia players. Based on these observations, 
we argue that maximizing the performance gain with 
NVM is not obtained by fixing it as a specific storage 
partition but varied widely for different applications. 
Specifically, for graph visualization, DB, and 
multimedia player applications, using NVM as a swap, 
a journal, and a file system partitions, respectively, 
performs well. Our optimized adoption of NVM 
improves the storage performance by 10-61%.    
 
Index Terms—Non-volatile memory, storage system, 
swap device, file system, journaling    

I. INTRODUCTION 

High performance NVM (non-volatile memory) media 
such as PCM (phase-change memory), STT-RAM (spin 
transfer torque RAM), and 3D Xpoint are anticipated to 

be adopted in the design of future computer systems. 
Specifically, NVM is expected to be used as secondary 
storage in addition to flash memory or HDDs (hard disk 
drives) due to their desirable properties such as relatively 
high performance, low-power consumption, and long 
endurance cycle [1-6]. This paper investigates how much 
performance gain can be obtained if we add NVM as 
various storage components (e.g., journal device, swap 
device, or file system device) of computer systems. 

NVM has also been considered as a strong candidate 
to replace DRAM as it is a byte-addressable medium and 
has substantial density benefits over DRAM. However, it 
does not show competitive performance to be a memory 
medium in current hardware specifications. In particular, 
the access time of PCM is slower than DRAM about 2-
5x in reads and 8-50x in writes [7, 8]. Hence, it is 
recently being considered as a high-speed storage rather 
than a memory medium.  

NVM hardware technology has already reached a 
certain level of maturity. Specifically, PCM has been 
commercialized and equipped in certain types of 
smartphones. Patents published recently by Intel describe 
a detailed micro-architecture to support PCM as memory 
and/or a storage device, implying that NVM based 
computer architectures are imminent [9, 10]. The primary 
interfaces for NVM is likely to be DIMM or PCI-e rather 
than other block I/O interfaces. This is because existing 
block I/O interfaces such as SATA or SAS are not fast 
enough to support high-performance NVM devices, 
limiting the full advantages that NVM conveys.  

Our aim is to maximize the benefit of NVM if we add 
NVM to the storage component of computer systems. To 
do this, we first analyze storage I/O requests under 
various applications. There are three types of storage I/O 
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requests that occur in computer systems: file system I/O, 
journaling I/O, and swap I/O. As these three types of I/O 
happen on different storage partitions, we can adopt 
NVM as a file system partition, a journaling partition, or 
a swap partition. As we have only limited NVM capacity, 
we should determine which partition of the storage area 
will be composed of NVM. 

Our analysis shows that a bulk of I/O does not happen 
on a single specific partition, but it is varied significantly 
for different application categories. In particular, 
journaling I/O accounts for a dominant portion of total 
I/O in DB applications like OLTP as transaction 
managements in these applications require consistent 
writes to the journal area. In contrast, swap I/O accounts 
for a large portion of I/O in graph visualization 
applications like gnuplot as such applications exhibit 
large memory footprint. That is, as the memory capacity 
is not sufficient to accommodate the working-set of the 
application, swapping occurs. For other applications such 
as web browsers and multimedia players, file system I/O 
accounts for a large portion of total I/O as these 
applications require consistent data file accesses.  

Based on these observations, we estimate how much 
performance gain can be obtained if we adopt NVM as 
different storage components and find out that the best 
performance through adding NVM is not obtained by 
fixing it as a specific storage partition but varied widely 
for different applications. Specifically, for graph 
visualization applications, using NVM as a swap device 
performs the best. In contrast, for DB applications, using 
NVM as a journal device performs well, in general, but 
assigning a small portion of NVM to a file system 
partition in order to absorb hot file I/O performs even 
better. For other applications such as web browser and 
multimedia players, using NVM as a file system partition 
performs the best. The performance improvement of the 
proposed solution is in the range of 10-61% in 
comparison with the system architecture that does not 
use NVM storage. 

The remainder of this paper is organized as follows. 
Section II describes the motivation of this research. 
Section III analyzes storage I/O requests under various 
application categories. An optimized adoption of NVM 
based on the analysis and the performance evaluation 
results are given in Section IV. Finally, we conclude this 
paper in Section V.  

II. MOTIVATIONS 

In this section, we perform real measurement studies 
to investigate how much performance gain can be 
obtained if we add NVM as a swap or a journal device. 
Our experiments are performed on Linux kernel 3.16.0 
and Ext4. As commercially available NVM hardware is 
limited, we emulate it by making use of DRAM on 
DIMM slots with appropriate timing delays. As we want 
to use NVM as a swap or a journal device, it should be 
recognized as a block I/O device. Thus, we develop an 
NVM device driver based on the existing Ramdisk driver. 
We measure the performance of the original system that 
uses HDD only and new systems that additionally use 
NVM as swap and journal devices, which we call 
NVM(swap) and NVM(journal), respectively. We run 
two benchmarks: IOzone and Memzone for I/O and 
memory intensive workloads, respectively. 

Fig. 1(a) shows the measured throughput of IOzone 
with the three architectures. As shown in the figure, 
NVM(journal) performs the best as it performs 
journaling I/O on NVM instead of slow storage. 
NVM(swap) does not exhibit such good results as it has 
the effect of extending memory capacity but IOzone is an 
I/O-intensive workload. Fig. 1(b) shows the measured 
execution time when Memzone is run. The results show 
that NVM(swap) significantly improves the performance 
of the system. Though the memory size itself is not 
extended, NVM(swap) performs well in memory-
intensive workloads as it provides a high performance 
swap device.  

This preliminary results show that the maximum 
performance gain of NVM cannot be obtained if we use 
it as a single fixed partition. In the next section, we will 
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     (a) IOzone Results              (b) Memzone Results 

Fig. 1. Benchmark Results. 
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analyze storage I/O requests on various application 
categories with respect to file system I/O, journaling I/O, 
and swap I/O, and then estimate how much performance 
gain can be obtained for each application category and 
I/O types if we use NVM.  

III. ANALYSIS OF APPLICATION I/O TRACES 

We collect storage I/O traces while executing various 
application categories and analyze them. To see the 
relative intensity of different storage area, we partition a 
HDD device into a file system, a journal area, and a swap 
area as shown in Fig. 2. Our experimental setting consists 
of 512GB DDR3-10700 memory and 60GB SATA HDD. 
For OS and file system, we use Ubuntu 14.04 64 bit and 
Ext4, respectively. Note that we use the external 
journaling option of Ext4 to collect the journal I/O 
separately. Table 1 shows the details of each partition we 
set.  

We use four application categories: gnuplot a graph 
drawing tool, videoplayer a multimedia player 
application, sysbench an OLTP workload generating 
benchmark, and firefox a web browser. Fig. 3 shows the 
amount of I/O generated on each storage partition for the 
four applications. As shown in the figure, a bulk of I/O 
does not happen on a single specific partition, but it is 
varied significantly for different application categories.  

Specifically, swap I/O accounts for a large portion of 
I/O in gnuplot as shown in Fig. 3(a). Graph visualization 
applications require large memory to calculate and draw 

each point in a graph, and thus the memory capacity may 
not be sufficient to accommodate the working-set of the 
application, which subsequently incurs large swap I/Os.  

In contrast, journaling I/O accounts for a dominant 
portion of total I/O in OLTP as shown in Fig. 3(b). As 
OLTP has a sequence of transaction processing 
workloads, it generates large I/Os on the journal area. 
However, OLTP also generates a substantial amount of 
I/O on the file system partition. Although journaling is 
used in transaction processing applications, file system 
I/O also accounts for a certain portion as files and their 
metadata should also be accessed to perform these kind 
of applications.  

Unlike the aforementioned applications, Fig. 3(c) and 
(d) exhibit large I/O requests on file system partitions. As 
a video player consistently reads a data file to play from 
the file system, it incurs large read I/Os from the file 
system as shown in Fig. 3(c). Similarly, firefox generates 
a dominant portion of file system I/O as shown in Fig. 
3(d). Web browsers usually read a web object from the 
web server and cache it on the local file system, which 
incurs file system I/O. The stored file will be used again 
if the user requests the same web page in the near future.  

Fig. 4 shows the distinct I/O requests that occur on 
each storage partition for the same application traces of 
Fig. 3. That is, we count only once for the same sector 
address although it was accessed multiple times in Fig. 4. 

DRAM
Main 
memory

Secondary 
storageJournal 

device
File 

System
Swap
device

/dev/sda1 /dev/sda5 /dev/sda6

 

Fig. 2. Partition setting for trace collection. 
 

Table 1. Storage partition information 

Partition Start End Description 
/dev/sda1 2,048 103,999,487 Filesystem 
/dev/sda5 104,001,536 111,998,975 Journal device 
/dev/sda6 112,001,024 119,998,463 Swap device 
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          (c) videoplayer               (d) firefox 

Fig. 3. I/O requests that occur on each storage partition for 
different applications. 
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By comparing the corresponding graphs in Fig. 3 and 4, 
we can estimate the relative hotness of each partition. For 
example, if the height of a graph in Fig. 4 is relatively 
lower than the height of the corresponding graph in Fig. 
3, that partition is certain to have hot I/O sectors. In other 
words, some sectors in that parition have essentially been 
accessed multiple times.   

Now, let us see in Fig. 3 and 4 which partitions have 
such hot I/O sectors. As the shapes of Fig. 4(a), (c) and 
(d) are similar to those of Fig. 3(a), (c) and (d), 
respectively, we cannot observe relatively hot I/O sectors 
from gnuplot, videoplay, and firefox. However, the 
height of file system partition in Fig. 4(b) is relatively 
lower than that of Fig. 3(b). This implies that OLTP has 
some hot I/O sectors on the file system partition although 
journal area has more I/O requests.   

IV. OPTIMIZED ADOPTION OF NVM STORAGE 

In this section, we discuss how NVM storage can be 
used appropriately for reflecting the I/O characteristics 
analyzed in Section III. Fig. 5 shows the traditional 
system architecture and the target architecture of this 
research. NVM is adopted as a part of storage layer, 
which can be used as a file system, a journal area, or a 
swap area, according to the application characteristics we 
analyzed.  

As we have only limited NVM capacity, we should 
determine which partition of the storage area will be 
composed of NVM. We analyzed total I/O requests and 
total distinct requests in Section III, with which we can 
estimate how much performance gain can be obtained if 
we adopt NVM as different storage components. 

NVM storage that can be adopted in our study is not 
limited to some specific types, but any of PCM, STT-
MRAM, or FeRAM can be utilized. However, we think 
that PCM is the most realistic medium as it is prospected 
to be fast storage but substantially slower than DRAM 
[11, 12]. STT-MRAM is suitable for main memory rather 
than storage as its access latency is as fast as that of 
DRAM and is also byte-addressable. FeRAM is difficult 
to enhance its density any longer. Due to this reason, we 
set PCM as the default type of NVM in our experiments. 

Fig. 6 shows the total elapsed time for executing 
gnuplot, OLTP, videoplayer, and firefox when we use the 
original HDD only and a small amount of additional 
NVM. The figure also presents the performance of an 
offline optimal placement with the given NVM capacity. 
To do so, we sort blocks by their access counts after 
executing the applications, and then place top blocks 
with the largest access count on NVM first regardless of 
their original partitions (i.e., file system, journal, or 
swap), while the remaining blocks with relatively small 
access counts are placed on HDD. We call this 
HDD+NVM(optimal), which is not a practical solution 
but displayed for comparison purposes.  

As shown in the figure, the best performance through 
adding NVM is not obtained by fixing it as a specific 
storage partition but varied widely for different 
applications. Another interesting observation is that we 
can decide the partition of NVM appropriately, thereby 
obtaining performances similar to that of offline optimal 
placement.  

As shown in Fig. 6(a), in case of gnuplot, using NVM 
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Fig. 4. Distinct I/O requests that occur on each storage partition 
for different applications. 
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as a swap device consistently performs better than other 
placements and it almost approaches the offline optimal 
placement. This is consistent with Fig. 3(a) and 4(a) that 
exhibit a large swap I/O.  

Fig. 6(b) shows the OLTP results, which contrast 
significantly as the NVM capacity is varied. When the 
NVM capacity is less than 25MB, HDD+NVM(fs) 
performs the best. However, as the NVM capacity 
increases, the performance of HDD+NVM(journal) is 

improved sharply, whereas HDD+NVM(fs) does not 
show improvement any longer. This is also consistent 
with the analysis results in Section III. That is, OLTP has 
some hot I/O sectors on the file system partition, which 
can be absorbed by assigning a small NVM partition. 
Also, as OLTP has a bulk of I/O on journal partitions, we 
can absorb them by assigning subsequent NVM capacity 
to the journal area.  

Fig. 6(c) and (d) show the videoplayer and firefox 
results. The performances of these two applications can 
be improved significantly when we adopt NVM as a file 
system partition. In particular, the total elapsed time is 
improved by 7-50% as the NVM capacity increases. This 
is also consistent with the analysis results in Section III. 
Also, adopting NVM as file system partitions exhibits 
similar results to that of offline optimal placement in 
these applications.  

We can summarize the suggestions of using NVM 
from the results as follows. For graph visualization, DB, 
and multimedia player applications, we suggest NVM to 
use as a swap, a journal, and a file system partitions, 
respectively. For DB applications such as OLTP, 
however, performances can be improved even better if 
we use a small portion of NVM as a hot file partition. 

V. CONCLUSIONS 

In this paper, we presented how NVM storage can be 
adopted efficiently for different application categories. 
We anatomized storage I/O requests with respect to file 
system I/O, journaling I/O, and swap I/O under various 
applications and observed that a bulk of I/O does not 
happen on a single storage partition, but it is varied 
significantly for different application categories. In 
particular, journaling I/O and swap I/O account for a 
dominant portion of total I/O in DB and graph 
applications, respectively, and file system I/O accounts 
for a large portion in web browsers and multimedia 
players. Based on these observations, we suggested the 
adoption of NVM appropriately for given applications. In 
particular, for graph visualization, DB, and multimedia 
player applications, we suggest NVM to use as a swap, a 
journal, and a file system partitions, respectively. For DB 
applications such as OLTP, performances can be further 
improved if we use a small portion of NVM as a hot file 
partition. 
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Fig. 6. Total elapsed time of HDD, HDD+NVM(fs), 
HDD+NVM(journal), HDD+NVM(swap) and HDD+NVM
(optimal) as NVM capacity is varied.  
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