
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2017.17.1.001 ISSN(Online) 2233-4866

Manuscript received Oct. 18, 2016; accepted Jan. 15, 2017
A part of this work was presented in Korean Conference of
Semiconductors, Seoul in Korea, Feb. 2016.
Department of Computer Science & Engineering, EWHA Womans
University, Seoul 120-750, Korea
E-mail : bahn@ewha.ac.kr

Optimized Adoption of NVM Storage by Considering
Workload Characteristics

Jisun Kim and Hyokyung Bahn

Abstract—This paper presents an optimized adoption
of NVM for the storage system of heterogeneous
applications. Our analysis shows that a bulk of I/O
does not happen on a single storage partition, but it is
varied significantly for different application
categories. In particular, journaling I/O accounts for
a dominant portion of total I/O in DB applications
like OLTP, whereas swap I/O accounts for a large
portion of I/O in graph visualization applications, and
file I/O accounts for a large portion in web browsers
and multimedia players. Based on these observations,
we argue that maximizing the performance gain with
NVM is not obtained by fixing it as a specific storage
partition but varied widely for different applications.
Specifically, for graph visualization, DB, and
multimedia player applications, using NVM as a swap,
a journal, and a file system partitions, respectively,
performs well. Our optimized adoption of NVM
improves the storage performance by 10-61%.

Index Terms—Non-volatile memory, storage system,
swap device, file system, journaling

I. INTRODUCTION

High performance NVM (non-volatile memory) media
such as PCM (phase-change memory), STT-RAM (spin
transfer torque RAM), and 3D Xpoint are anticipated to

be adopted in the design of future computer systems.
Specifically, NVM is expected to be used as secondary
storage in addition to flash memory or HDDs (hard disk
drives) due to their desirable properties such as relatively
high performance, low-power consumption, and long
endurance cycle [1-6]. This paper investigates how much
performance gain can be obtained if we add NVM as
various storage components (e.g., journal device, swap
device, or file system device) of computer systems.

NVM has also been considered as a strong candidate
to replace DRAM as it is a byte-addressable medium and
has substantial density benefits over DRAM. However, it
does not show competitive performance to be a memory
medium in current hardware specifications. In particular,
the access time of PCM is slower than DRAM about 2-
5x in reads and 8-50x in writes [7, 8]. Hence, it is
recently being considered as a high-speed storage rather
than a memory medium.

NVM hardware technology has already reached a
certain level of maturity. Specifically, PCM has been
commercialized and equipped in certain types of
smartphones. Patents published recently by Intel describe
a detailed micro-architecture to support PCM as memory
and/or a storage device, implying that NVM based
computer architectures are imminent [9, 10]. The primary
interfaces for NVM is likely to be DIMM or PCI-e rather
than other block I/O interfaces. This is because existing
block I/O interfaces such as SATA or SAS are not fast
enough to support high-performance NVM devices,
limiting the full advantages that NVM conveys.

Our aim is to maximize the benefit of NVM if we add
NVM to the storage component of computer systems. To
do this, we first analyze storage I/O requests under
various applications. There are three types of storage I/O

2 JISUN KIM et al : OPTIMIZED ADOPTION OF NVM STORAGE BY CONSIDERING WORKLOAD CHARACTERISTICS

requests that occur in computer systems: file system I/O,
journaling I/O, and swap I/O. As these three types of I/O
happen on different storage partitions, we can adopt
NVM as a file system partition, a journaling partition, or
a swap partition. As we have only limited NVM capacity,
we should determine which partition of the storage area
will be composed of NVM.

Our analysis shows that a bulk of I/O does not happen
on a single specific partition, but it is varied significantly
for different application categories. In particular,
journaling I/O accounts for a dominant portion of total
I/O in DB applications like OLTP as transaction
managements in these applications require consistent
writes to the journal area. In contrast, swap I/O accounts
for a large portion of I/O in graph visualization
applications like gnuplot as such applications exhibit
large memory footprint. That is, as the memory capacity
is not sufficient to accommodate the working-set of the
application, swapping occurs. For other applications such
as web browsers and multimedia players, file system I/O
accounts for a large portion of total I/O as these
applications require consistent data file accesses.

Based on these observations, we estimate how much
performance gain can be obtained if we adopt NVM as
different storage components and find out that the best
performance through adding NVM is not obtained by
fixing it as a specific storage partition but varied widely
for different applications. Specifically, for graph
visualization applications, using NVM as a swap device
performs the best. In contrast, for DB applications, using
NVM as a journal device performs well, in general, but
assigning a small portion of NVM to a file system
partition in order to absorb hot file I/O performs even
better. For other applications such as web browser and
multimedia players, using NVM as a file system partition
performs the best. The performance improvement of the
proposed solution is in the range of 10-61% in
comparison with the system architecture that does not
use NVM storage.

The remainder of this paper is organized as follows.
Section II describes the motivation of this research.
Section III analyzes storage I/O requests under various
application categories. An optimized adoption of NVM
based on the analysis and the performance evaluation
results are given in Section IV. Finally, we conclude this
paper in Section V.

II. MOTIVATIONS

In this section, we perform real measurement studies
to investigate how much performance gain can be
obtained if we add NVM as a swap or a journal device.
Our experiments are performed on Linux kernel 3.16.0
and Ext4. As commercially available NVM hardware is
limited, we emulate it by making use of DRAM on
DIMM slots with appropriate timing delays. As we want
to use NVM as a swap or a journal device, it should be
recognized as a block I/O device. Thus, we develop an
NVM device driver based on the existing Ramdisk driver.
We measure the performance of the original system that
uses HDD only and new systems that additionally use
NVM as swap and journal devices, which we call
NVM(swap) and NVM(journal), respectively. We run
two benchmarks: IOzone and Memzone for I/O and
memory intensive workloads, respectively.

Fig. 1(a) shows the measured throughput of IOzone
with the three architectures. As shown in the figure,
NVM(journal) performs the best as it performs
journaling I/O on NVM instead of slow storage.
NVM(swap) does not exhibit such good results as it has
the effect of extending memory capacity but IOzone is an
I/O-intensive workload. Fig. 1(b) shows the measured
execution time when Memzone is run. The results show
that NVM(swap) significantly improves the performance
of the system. Though the memory size itself is not
extended, NVM(swap) performs well in memory-
intensive workloads as it provides a high performance
swap device.

This preliminary results show that the maximum
performance gain of NVM cannot be obtained if we use
it as a single fixed partition. In the next section, we will

0

300

600

900

1200

1500

1800

2100

IOzone

Th
ro

ug
hp

ut
 (M

B
/s

)

DRAM only

NVM(swap)

NVM(memory)

NVM(journal)

0

300

600

900

1200

1500

1800

2100

IOzone

Th
ro

ug
hp

ut
 (M

B
/s

)

DRAM only

NVM(swap)

NVM(memory)

NVM(journal)

0

300

600

900

1200

1500

1800

2100

IOzone

Th
ro

ug
hp

ut
 (M

B
/s

)

DRAM only

NVM(swap)

NVM(memory)

NVM(journal)

0

300

600

900

1200

1500

1800

2100

IOzone

Th
ro

ug
hp

ut
 (M

B
/s

)

DRAM only

NVM(swap)

NVM(memory)

NVM(journal)
0

300

600

900

1200

1500

1800

2100

IOzone

Th
ro

ug
hp

ut
 (M

B
/s

)

DRAM only

NVM(swap)

NVM(memory)

NVM(journal)

0

50

100

150

200

250

300

Memzone

E
xe

cu
tio

n
tim

e
(s

)

DRAM only

NVM(swap)

NVM(memory)

NVM(journal)

0

50

100

150

200

250

300

Memzone

E
xe

cu
tio

n
tim

e
(s

)

DRAM only

NVM(swap)

NVM(memory)

NVM(journal)

0

50

100

150

200

250

300

Memzone

E
xe

cu
tio

n
tim

e
(s

)

DRAM only

NVM(swap)

NVM(memory)

NVM(journal)

HDD only

NVM(swap)

NVM(journal)

 (a) IOzone Results (b) Memzone Results

Fig. 1. Benchmark Results.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 3

analyze storage I/O requests on various application
categories with respect to file system I/O, journaling I/O,
and swap I/O, and then estimate how much performance
gain can be obtained for each application category and
I/O types if we use NVM.

III. ANALYSIS OF APPLICATION I/O TRACES

We collect storage I/O traces while executing various
application categories and analyze them. To see the
relative intensity of different storage area, we partition a
HDD device into a file system, a journal area, and a swap
area as shown in Fig. 2. Our experimental setting consists
of 512GB DDR3-10700 memory and 60GB SATA HDD.
For OS and file system, we use Ubuntu 14.04 64 bit and
Ext4, respectively. Note that we use the external
journaling option of Ext4 to collect the journal I/O
separately. Table 1 shows the details of each partition we
set.

We use four application categories: gnuplot a graph
drawing tool, videoplayer a multimedia player
application, sysbench an OLTP workload generating
benchmark, and firefox a web browser. Fig. 3 shows the
amount of I/O generated on each storage partition for the
four applications. As shown in the figure, a bulk of I/O
does not happen on a single specific partition, but it is
varied significantly for different application categories.

Specifically, swap I/O accounts for a large portion of
I/O in gnuplot as shown in Fig. 3(a). Graph visualization
applications require large memory to calculate and draw

each point in a graph, and thus the memory capacity may
not be sufficient to accommodate the working-set of the
application, which subsequently incurs large swap I/Os.

In contrast, journaling I/O accounts for a dominant
portion of total I/O in OLTP as shown in Fig. 3(b). As
OLTP has a sequence of transaction processing
workloads, it generates large I/Os on the journal area.
However, OLTP also generates a substantial amount of
I/O on the file system partition. Although journaling is
used in transaction processing applications, file system
I/O also accounts for a certain portion as files and their
metadata should also be accessed to perform these kind
of applications.

Unlike the aforementioned applications, Fig. 3(c) and
(d) exhibit large I/O requests on file system partitions. As
a video player consistently reads a data file to play from
the file system, it incurs large read I/Os from the file
system as shown in Fig. 3(c). Similarly, firefox generates
a dominant portion of file system I/O as shown in Fig.
3(d). Web browsers usually read a web object from the
web server and cache it on the local file system, which
incurs file system I/O. The stored file will be used again
if the user requests the same web page in the near future.

Fig. 4 shows the distinct I/O requests that occur on
each storage partition for the same application traces of
Fig. 3. That is, we count only once for the same sector
address although it was accessed multiple times in Fig. 4.

DRAM
Main
memory

Secondary
storageJournal

device
File

System
Swap
device

/dev/sda1 /dev/sda5 /dev/sda6

Fig. 2. Partition setting for trace collection.

Table 1. Storage partition information

Partition Start End Description
/dev/sda1 2,048 103,999,487 Filesystem
/dev/sda5 104,001,536 111,998,975 Journal device
/dev/sda6 112,001,024 119,998,463 Swap device

0

20

40

60

80

100

120

140

160

Filesystem Journal Swap

re
qu

es
te

d
bl

oc
k

I/O
(M

B)

0

10

20

30

40

50

60

70

80

90

Filesystem Journal Swap

re
qu

es
te

d
bl

oc
k

I/O
 (M

B)

 (a) gnuplot (b) OLTP

0

500

1000

1500

2000

2500

3000

3500

4000

Filesystem Journal Swap

re
qu

es
te

d
bl

oc
k

I/O
(M

B
)

0

20

40

60

80

100

120

140

160

Filesystem Journal Swap

re
qu

es
te

d
bl

oc
k

I/O
(M

B
)

 (c) videoplayer (d) firefox

Fig. 3. I/O requests that occur on each storage partition for
different applications.

4 JISUN KIM et al : OPTIMIZED ADOPTION OF NVM STORAGE BY CONSIDERING WORKLOAD CHARACTERISTICS

By comparing the corresponding graphs in Fig. 3 and 4,
we can estimate the relative hotness of each partition. For
example, if the height of a graph in Fig. 4 is relatively
lower than the height of the corresponding graph in Fig.
3, that partition is certain to have hot I/O sectors. In other
words, some sectors in that parition have essentially been
accessed multiple times.

Now, let us see in Fig. 3 and 4 which partitions have
such hot I/O sectors. As the shapes of Fig. 4(a), (c) and
(d) are similar to those of Fig. 3(a), (c) and (d),
respectively, we cannot observe relatively hot I/O sectors
from gnuplot, videoplay, and firefox. However, the
height of file system partition in Fig. 4(b) is relatively
lower than that of Fig. 3(b). This implies that OLTP has
some hot I/O sectors on the file system partition although
journal area has more I/O requests.

IV. OPTIMIZED ADOPTION OF NVM STORAGE

In this section, we discuss how NVM storage can be
used appropriately for reflecting the I/O characteristics
analyzed in Section III. Fig. 5 shows the traditional
system architecture and the target architecture of this
research. NVM is adopted as a part of storage layer,
which can be used as a file system, a journal area, or a
swap area, according to the application characteristics we
analyzed.

As we have only limited NVM capacity, we should
determine which partition of the storage area will be
composed of NVM. We analyzed total I/O requests and
total distinct requests in Section III, with which we can
estimate how much performance gain can be obtained if
we adopt NVM as different storage components.

NVM storage that can be adopted in our study is not
limited to some specific types, but any of PCM, STT-
MRAM, or FeRAM can be utilized. However, we think
that PCM is the most realistic medium as it is prospected
to be fast storage but substantially slower than DRAM
[11, 12]. STT-MRAM is suitable for main memory rather
than storage as its access latency is as fast as that of
DRAM and is also byte-addressable. FeRAM is difficult
to enhance its density any longer. Due to this reason, we
set PCM as the default type of NVM in our experiments.

Fig. 6 shows the total elapsed time for executing
gnuplot, OLTP, videoplayer, and firefox when we use the
original HDD only and a small amount of additional
NVM. The figure also presents the performance of an
offline optimal placement with the given NVM capacity.
To do so, we sort blocks by their access counts after
executing the applications, and then place top blocks
with the largest access count on NVM first regardless of
their original partitions (i.e., file system, journal, or
swap), while the remaining blocks with relatively small
access counts are placed on HDD. We call this
HDD+NVM(optimal), which is not a practical solution
but displayed for comparison purposes.

As shown in the figure, the best performance through
adding NVM is not obtained by fixing it as a specific
storage partition but varied widely for different
applications. Another interesting observation is that we
can decide the partition of NVM appropriately, thereby
obtaining performances similar to that of offline optimal
placement.

As shown in Fig. 6(a), in case of gnuplot, using NVM

0

20

40

60

80

100

120

140

Filesystem Journal Swap

un
iq

ue
 b

lo
ck

 (M
B)

0

10

20

30

40

50

60

70

80

90

Filesystem Journal Swap

un
iq

ue
 b

lo
ck

 (M
B)

 (a) gnuplot (b) OLTP

0

500

1000

1500

2000

2500

Filesystem Journal Swap

un
iq

ue
 b

lo
ck

 (M
B

)

0

20

40

60

80

100

120

Filesystem Journal Swap

un
iq

ue
 b

lo
ck

 (
M

B
)

 (c) videoplayer (d) firefox

Fig. 4. Distinct I/O requests that occur on each storage partition
for different applications.

L1 I-Cache

L2 Cache

CPU

L1 D-Cache

DRAM

HDD HDD

L1 I-Cache

L2 Cache

CPU

L1 D-Cache

DRAM

NVM DeviceHDD

 (a) Original architecture (b) Proposed architecture

Fig. 5. Storage architecture with NVM.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 5

as a swap device consistently performs better than other
placements and it almost approaches the offline optimal
placement. This is consistent with Fig. 3(a) and 4(a) that
exhibit a large swap I/O.

Fig. 6(b) shows the OLTP results, which contrast
significantly as the NVM capacity is varied. When the
NVM capacity is less than 25MB, HDD+NVM(fs)
performs the best. However, as the NVM capacity
increases, the performance of HDD+NVM(journal) is

improved sharply, whereas HDD+NVM(fs) does not
show improvement any longer. This is also consistent
with the analysis results in Section III. That is, OLTP has
some hot I/O sectors on the file system partition, which
can be absorbed by assigning a small NVM partition.
Also, as OLTP has a bulk of I/O on journal partitions, we
can absorb them by assigning subsequent NVM capacity
to the journal area.

Fig. 6(c) and (d) show the videoplayer and firefox
results. The performances of these two applications can
be improved significantly when we adopt NVM as a file
system partition. In particular, the total elapsed time is
improved by 7-50% as the NVM capacity increases. This
is also consistent with the analysis results in Section III.
Also, adopting NVM as file system partitions exhibits
similar results to that of offline optimal placement in
these applications.

We can summarize the suggestions of using NVM
from the results as follows. For graph visualization, DB,
and multimedia player applications, we suggest NVM to
use as a swap, a journal, and a file system partitions,
respectively. For DB applications such as OLTP,
however, performances can be improved even better if
we use a small portion of NVM as a hot file partition.

V. CONCLUSIONS

In this paper, we presented how NVM storage can be
adopted efficiently for different application categories.
We anatomized storage I/O requests with respect to file
system I/O, journaling I/O, and swap I/O under various
applications and observed that a bulk of I/O does not
happen on a single storage partition, but it is varied
significantly for different application categories. In
particular, journaling I/O and swap I/O account for a
dominant portion of total I/O in DB and graph
applications, respectively, and file system I/O accounts
for a large portion in web browsers and multimedia
players. Based on these observations, we suggested the
adoption of NVM appropriately for given applications. In
particular, for graph visualization, DB, and multimedia
player applications, we suggest NVM to use as a swap, a
journal, and a file system partitions, respectively. For DB
applications such as OLTP, performances can be further
improved if we use a small portion of NVM as a hot file
partition.

0

50

100

150

200

250

300

350

400

5 10 15 20 25 30 35 40 45 50

To
ta

l e
la

ps
ed

 ti
m

e
(s

)

NVM size (MB)

HDD only HDD+NVM(fs) HDD+NVM(journal) HDD+NVM(swap) HDD+NVM(optimal)

(a) gnuplot

0

50

100

150

200

250

300

5 10 15 20 25 30 35 40 45 50

To
ta

l e
la

ps
ed

 ti
m

e
(s

)

NVM size (MB)

HDD only HDD+NVM(fs) HDD+NVM(journal) HDD+NVM(swap) HDD+NVM(optimal)

(b) OLTP

0

1000

2000

3000

4000

5000

6000

50 100 150 200 250 300 350 400 450 500

To
ta

l e
la

ps
ed

 ti
m

e
(s

)

NVM size (MB)

HDD only HDD+NVM(fs) HDD+NVM(journal) HDD+NVM(swap) HDD+NVM(optimal)

(c) videoplayer

0

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40 45 50

To
ta

l e
la

ps
ed

 ti
m

e
(s

)

NVM size (MB)

HDD only HDD+NVM(fs) HDD+NVM(journal) HDD+NVM(swap) HDD+NVM(optimal)

(d) firefox

Fig. 6. Total elapsed time of HDD, HDD+NVM(fs),
HDD+NVM(journal), HDD+NVM(swap) and HDD+NVM
(optimal) as NVM capacity is varied.

6 JISUN KIM et al : OPTIMIZED ADOPTION OF NVM STORAGE BY CONSIDERING WORKLOAD CHARACTERISTICS

ACKNOWLEDGMENT

This work was supported by the Basic Science
Research program through the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 2016R1A2B4015750) and ICT
R&D program of MSIP/IITP (R-20160904-004151).

REFERENCES

[1] E. Lee, D. Jin, K. Koh, and H. Bahn, “Is Buffer
Cache Still Effective for High Speed PCM (Phase
Change Memory) Storage?” Proc. IEEE Int’l Conf.
Parallel and Distributed Systems (ICPADS), 2011.

[2] C. D. Wright, M. M. Aziz, M. Armand, S.
Senkader, and W. Yu, “Can We Reach Tbit/sq.in.
Storage Densities with Phase-Change Media?”
Proc. European Phase Change and Ovonic s Symp.
(EPCOS), 2006.

[3] F. Bedeschi et al., “A multi-level-cell bipolar-
selected phase-change memory,” Proc. Int’l Solid-
State Circuits Conf. (ISSCC), 2008.

[4] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov,
R.K. Gupta, and S. Swanson, “Moneta: A High-
Performance Storage Array Architecture for Next-
Generation, Non-volatile Memories,” Proc.
IEEE/ACM Symp. Microarchitecture (Micro),
pp.385-395, 2010

[5] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta,
and S. Swanson, “Onyx: a prototype phase change
memory storage array,” Proc. USENIX Conf. Hot
topics in Storage and File systems (HotStorage),
2011.

[6] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B.
Lee, D. Burger, and D. Coetzee, “Better I/O
through byte-addressable, persistent memory,” Proc.
ACM Symp. Operating Systems Principles (SOSP),
2009.

[7] E. Lee, J. Jang, T. Kim, and H. Bahn, “On-demand
Snapshot: An Efficient Versioning File System for
Phase-Change Memory,” IEEE Tran. Knowledge
and Data Engineering, vol. 25, no. 12, pp.2841-
2853, 2013.

[8] H. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg,
B. Rajendran, M. Asheghi, and K. Goodson,
“Phase Change Memory,” Proc. of the IEEE,

vol.98, no.12, pp.2201-2227, 2010.
[9] B. Nale, R. Ramanujan, M. Swaminathan, and T.

Thomas, “Memory Channel that Supports near
Memory and Far Memory Access,” PCT/US2011/
054421, Intel Corporation, 2013.

[10] R. K. Ramanujan, R. Agarwal, and G. J. Hinton,
“Apparatus and Method for Implementing a Multi-
level Memory Hierarchy Having Different
Operating Modes,” US 20130268728 A1, Intel
Corporation, 2013.

[11] R. F. Freitas, and W. W. Wilcke, “Storage-class
memory: The next storage system technology,”
IBM J. Res. and Dev., vol.52, no.4, pp.439-447,
2008.

[12] M. Kryder, and C. S. Kim, “After hard drives:
What comes next?,” IEEE Tran. Magnetics, vol.45,
no.10, pp.3406-3413, 2009.

Jisun Kim received the B.S degrees
in the computer science and
engineering from Hanshin University
in 2011. She is currently a PhD
candidate of computer science and
engineering at Ewha Womans
University, Korea. Her research

interests include operating system, storage system,
caching algorithms, system optimization and embedded
systems.

Hyokung Bahn received the BS, MS,
and PhD degrees in computer science
from Seoul National University, in
1997, 1999, and 2002, respectively.
He is currently a full professor of
computer engineering at Ewha
University, Korea. His research

interests include operating systems, storage systems,
embedded systems, and real-time systems. He received
the Best Paper Awards at the USENIX Conference on
File and Storage Technologies in 2013.

