DOI QR코드

DOI QR Code

A Design Control System of Hybrid Underwater Glider and Performance Test

하이브리드 수중 글라이더의 제어 시스템 설계 및 성능 시험

  • Ji, Dae-hyeong (Department of Mechanical Engineering, Korea Maritime and Ocean University) ;
  • Choi, Hyeung-sik (Department of Mechanical Engineering, Korea Maritime and Ocean University) ;
  • Kim, Joon-young (Division of Mechanical Engineering, Korea Maritime and Ocean University) ;
  • Jung, Dong-wook (Department of Mechanical Engineering, Korea Maritime and Ocean University) ;
  • Jeong, Seong-hoon (Research Institute of Industrial Technology, Korea Maritime and Ocean University)
  • 지대형 (한국해양대학교 기계공학과) ;
  • 최형식 (한국해양대학교 기계공학과) ;
  • 김준영 (한국해양대학교 기계공학부) ;
  • 정동욱 (한국해양대학교 기계공학과) ;
  • 정성훈 (한국해양대학교 산업기술연구소)
  • Received : 2017.02.06
  • Accepted : 2017.02.24
  • Published : 2017.02.28

Abstract

In this paper, we studied the control of the hybrid underwater glider (HUG), which has the advantage of high precision route search function and long-term mission capability. Dynamic modeling of HUG is based on numerical model of the attitude controller and buoyancy engine, thruster. We designed the control part considering the smooth control and precise sailing of HUG. A buoyancy engine capable of inhaling water is designed to control the buoyancy of HUG. And mass shifter carrying the battery was designed for controlling pitching motion of HUG. A control system for controlling the buoyancy engine and the attitude controller was constructed. In order to verify performance, we performed water tank test using manufactured HUG.

본 논문에서는 고정밀 항로 탐색 기능과 장기 임무 수행 능력이 장점인 하이브리드 수중 글라이더의 제어에 관한 연구를 수행하였다. 하이브리드 수중 글라이더의 동적 모델링은 자세 제어기와 부력 엔진, 추진기의 수치 모델을 기반으로 하였다. 하이브리드 수중 글라이더의 부드러운 제어와 정밀한 항해를 고려하여 제어 시스템을 설계하였다. 물을 흡입 할 수 있는 부력 엔진은 선체의 부력을 제어하도록 설계되었다. 그리고 배터리를 탑재한 질량 이동체는 선체의 피칭 동작을 제어 할 수 있도록 설계되었다. 또한 부력 엔진 및 자세 제어기를 제어하기 위한 제어 시스템이 구성하였다. 성능을 확인하기 위해 제작된 모델을 사용하여 수조 시험을 수행하였다.

Keywords

References

  1. J. J. Park, "Underwater gliders: Its applicability in the East/Japan sea," Ocean and Polar Research, Vol. 35, No. 2, pp. 107-121, June 2013. https://doi.org/10.4217/OPR.2013.35.2.107
  2. Y. S. Park, et al, "Report of east sea crossing by underwater glider," The Sea, Vol. 17, No. 2, pp. 130-137, May. 2012. https://doi.org/10.7850/jkso.2012.17.2.130
  3. C. C. Eriksen, et al, "Seaglider: A long-range autonomous underwater vehicle for oceanographic research," IEEE Journal of Oceanic Engineering, Vol. 26, No. 4, pp. 424-436, Oct. 2001. https://doi.org/10.1109/48.972073
  4. J. Sherman, et al, "The autonomous underwater glider "Spray"," IEEE Journal of Oceanic Engineering, Vol. 26, No. 4, pp. 437-446, Oct. 2001. https://doi.org/10.1109/48.972076
  5. D. C. Webb, J. S. Paul, and P. J. Clayton, "SLOCUM: An underwater glider propelled by environmental energy," IEEE Journal of Oceanic Engineering, Vol. 26, No. 4, pp. 447-452, Aug. 2001. https://doi.org/10.1109/48.972077
  6. E. Fiorelli, et al, "Multi-AUV control and adaptive sampling in Monterey Bay," IEEE Journal of Oceanic Engineering, Vol. 31, No. 4, pp. 935-948, Oct. 2006. https://doi.org/10.1109/JOE.2006.880429
  7. N. E. Leonard, et al, "Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay," Journal of Field Robotics, Vol. 27, No. 6, pp. 718-740, Sep. 2010. https://doi.org/10.1002/rob.20366
  8. R. N. Smith, et al, "Persistent ocean monitoring with underwater gliders: Adapting sampling resolution," Journal of Field Robotics, Vol. 28, No. 5, pp. 714-741, Aug. 2011. https://doi.org/10.1002/rob.20405
  9. D. C. Seo, G. N. Jo, and H. S. Choi, "Pitching control simulations of an underwater glider using CFD analysis," OCEANS 2008-MTS/IEEE Kobe Techno-Ocean, pp. 1-5, April 2008.
  10. S. K. Jeong, et al, "Design and control of high speed unmanned underwater glider," International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 3, pp. 273-279, July 2016. https://doi.org/10.1007/s40684-016-0035-1
  11. T. I. Fossen, Guidance and Control of Ocean Vehicles, New York: NY, John Wiley & Sons, 1994.

Cited by

  1. Ray형 수중글라이더 소형 축소모델 개발 및 성능시험 vol.21, pp.6, 2017, https://doi.org/10.12673/jant.2017.21.6.537