DOI QR코드

DOI QR Code

Measurement of natural frequency of aluminum honeycomb sandwich beams using high speed digital cameras

고속 디지털 카메라를 이용한 알루미늄 하니콤 샌드위치 보의 고유 진동수 계측

  • Received : 2016.11.02
  • Accepted : 2016.12.23
  • Published : 2017.01.01

Abstract

In this study, we measured the natural frequencies of aluminum honeycomb sandwich beams using digital image correlation technique. The vibration images were captured using two high speed digital cameras and the images were converted to displacements by the digital image correlation technique. Displacement data in time domain were tranformed to frequency domain data by fast Fourier transform software. To reduce noise invoked by random exitation, a spectrum averaging technique and Savitsky-Golay digital filter were adopted. A conventional vibration measurement using an accelerometer and a finite element analysis were performed to compare the results by high speed digital camera measurement method. In conclusion, new method using high speed digital cameras and digital image correlation technique can measure the vibration of beam structures and can be applied to bio-structures where sensors cannot be attached.

본 연구에서는 디지털 영상 상관 기법을 이용하여 알루미늄 하니콤 샌드위치 보의 고유 진동수를 계측하였다. 고속 디지털 카메라를 이용하여 보의 진동 영상을 획득하고 디지털영상 상관 기법을 이용하여 변위를 계산하였다. 시간 영역에서의 변위 데이터를 고속 퓨리에 변환하여 주파수 영역의 응답으로 변환하였다. 랜덤 가진에 따른 주파수 영역에서의 잡음을 줄이기 위하여 스펙트럼 평균화 기법과 Savitsky-Golay 디지털 필터를 사용하였다. 가속도계를 이용한 기존의 방법 및 유한요소 해석 결과와의 비교를 통하여 방법의 정확성을 확인하였다. 결론적으로 고속 디지털 카메라와 디지털 영상 상관 기법을 이용하는 새로운 방법은 구조물의 진동을 잘 측정할 수 있음을 보였고, 센서를 부착하기 어려운 바이오 구조 등의 진동 계측에 적용할 수 있을 것이다.

Keywords

References

  1. Micro-measurements, "Strain gauge selection: criteria, procedures, recommendations," Tech Note TN-505-4, 2010.
  2. Peter, W. H. and Ranson, W. F., "Digital imaging techniques in experimental stress analysis," Optical Engineering, Vol. 21, 1982, pp. 427-432.
  3. Jin, T. and Goo, N. S., "Measurement of thermal deformation of a ring structure using digital image correlation technique, J. of The Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 9, 2011, pp. 877-882. https://doi.org/10.5139/JKSAS.2011.39.9.877
  4. Pan, B., Qian, K., Xie, H. and Asundi, A., "Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review," Measurement Science and Technology, Vol. 20, 2009, 062001(12pp).
  5. Helfrick, M. N., Niezrecki, C., Avitabile, P., and Schmidt, T., "3D digital image correlation methods for full-field vibration measurment," Mechanical Systems and Signal Processing, Vol. 25, 2011, pp. 917-927. https://doi.org/10.1016/j.ymssp.2010.08.013
  6. ARAMIS, v. 6.0.2 User's Manual, Revision A, GOM mbH, Braunschweig, Germany, 2004.
  7. Murray, S., "Understanding the Perils of Spectrum Analyzer Power Averaging," Keithley Instruments White Paper, www.keithley.com/products/rfmicrowave, 2006.
  8. Savitzky, A. and Golay, M. JE, "Smoothing and differentiation of data by simplified least squares procedures," Analytical Chemistry, Vol.36, No. 8, 1964, pp. 1627-1639. https://doi.org/10.1021/ac60214a047