DOI QR코드

DOI QR Code

동시 무선 정보 및 전력 전송을 위한 통합된 수신기 구조 기반의 새로운 검출 기법

Novel Detection Schemes Based on the Unified Receiver Architecture for SWIPT

  • 투고 : 2016.08.31
  • 심사 : 2017.01.04
  • 발행 : 2017.01.31

초록

본 논문에서는 동시 무선 정보 및 전력 전송 시스템에서 전송률-에너지 영역 관점에서의 근본적인 트레이드오프를 최소화하기 위해 제안되었던 새로운 수신기 구조를 기반으로 복잡도가 낮은 새로운 검출 기법들을 제안한다. 첫 번째로 에너지 하베스팅을 위한 정류된 신호로부터 얻을 수 있는 진폭 정보를 통해 유클리드 거리 기반으로 부호의 진폭을 먼저 검출한 후 기존의 정보 복호화 과정에서 얻을 수 있는 위상 정보를 통해 유클리드 거리를 기반으로 최종 부호를 검출하는 이단 검출 기법을 제안한다. 두 번째로 기존의 정보 복호화 과정을 통해 얻을 수 있는 진폭과 위상 정보를 포함한 유클리드 거리와 에너지 하베스팅을 위한 정류된 신호로부터 얻을 수 있는 진폭정보를 포함한 유클리드 거리를 결합하여 부호를 검출 할 수 있는 유클리드 거리 결합 검출 기법을 제시한다. 모의실험을 통해 부호 에러율과 부호 성공률-에너지 영역, 달성 가능한 전송률-에너지 영역 측면에서 기존의 정보 복호화 기법보다 우수한 성능을 얻음을 확인하였다.

In this paper, we propose two novel detection schemes with low-complexity based on the unified receiver architecture which minimizes a fundamental tradeoff at rate-energy region in SWIPT system. The proposed detection schemes are twofold: The two-stage detection scheme and Euclidean distance combination detection scheme. The two-stage detection scheme detects amplitude information of symbols from rectified signals for energy harvesting. In the sequel, it detects symbols based on phase information of baseband signals for information decoding. The Euclidean distance combination detection scheme detects symbols using linear positive-weighted sum of two metrics: Euclidean distance based on baseband signals for information decoding and Euclidean distance based on rectified signals for energy harvesting. For numerical results, we confirm that the proposed detection scheme can achieve better performance than the conventional scheme in terms of symbol error rate, symbol success rate-energy region and achievable rate-energy region.

키워드

참고문헌

  1. V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, "Optimal energy management policies for energy harvesting sensor nodes," IEEE Trans. Wirel. Commun., vol. 9, no. 4, pp. 1326-1336, Apr. 2010. https://doi.org/10.1109/TWC.2010.04.080749
  2. J. Yang and S. Ulukus, "Optimal packet scheduling in an energy harvesting communication system," IEEE Trans. Commun., vol. 60, no. 1, pp. 220-230, Jan. 2012. https://doi.org/10.1109/TCOMM.2011.112811.100349
  3. D. K. Shin, J. Kang, Y. Kim and W. Choi, "New receiver architecture for simultaneously wireless information and power transfer," in Proc. KICS Summer General Conference 2016, pp. 261-262, Jeju Island Korea, June 2016.
  4. B. Hong and W. Choi, "Distributed MIMO systems based on quantize-map-and-forward relaying," The Journal of Korean Institute of Communications and Information Society, vol. 39A, no. 7, pp. 404-412, July 2014. https://doi.org/10.7840/kics.2014.39A.7.404
  5. S. H. Chae, S. I. Paek, B. Hong, and W. Choi, "An overview of the compressive sensing based multiple access techniques," in Proc. KICS Summer General Conference 2015, pp. 9-10, Jeju Island Korea, June 2015.
  6. X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Commun. Surv. & Tuts., vol. 17, no. 2, pp. 757-789, Second quarter 2015. https://doi.org/10.1109/COMST.2014.2368999
  7. S. Bi, C. K. Ho, and R. Zhang, "Wireless powered communication: Opportunities and challenges," IEEE Commun. Mag., vol. 53, no. 4, pp. 117-125, Apr. 2015. https://doi.org/10.1109/MCOM.2015.7081084
  8. L. R. Varshney, "Transporting information and energy simultaneously," in Proc. IEEE ISIT, pp. 1612-1616, Toronto, Canada, Jul. 2008.
  9. P. Grover and A. Sahai, "Shannon meets Tesla: wireless information and power transfer," in Proc. IEEE ISIT, pp. 2263-2367, Austin, Texas, USA, Jun. 2010.
  10. R. Zhang and C. K. Ho, "MIMO broadcasting for simultaneous wireless information and power transfer," IEEE Trans. Wirel. Commun., vol. 12, no. 5, pp. 1989-2001, May 2013. https://doi.org/10.1109/TWC.2013.031813.120224
  11. L. Liu, R. Zhang, and K.-C. Chua, "Wireless information transfer with opportunistic energy harvesting," IEEE Trans. Wirel. Commun., vol. 12, no. 1, pp. 288-300, Jan. 2013. https://doi.org/10.1109/TWC.2012.113012.120500
  12. L. Liu, R. Zhang, and K.-C. Chua, "Wireless information and power transfer: A dynamic power splitting approach," IEEE Trans. Commun., vol. 61, no. 9, pp. 3990-4001, Sept. 2013. https://doi.org/10.1109/TCOMM.2013.071813.130105
  13. X. Zhou, R. Zhang, and C. K. Ho, "Wireless information and power transfer: architecture design and rate-energy tradeoff," IEEE Trans. Commun., vol. 61, no. 11, pp. 4754-4767, Nov. 2013. https://doi.org/10.1109/TCOMM.2013.13.120855
  14. Y.-B, Kim, D. K. Shin, and W. Choi, "Rate-energy in wireless information and power transfer: New receiver architecture and modulation," submitted to IEEE Trans. Sign. Process.
  15. I.-M. Kim and D. I. Kim, "Wireless information and power transfer: rate-energy tradeoff for equi-probable arbitrary-shaped discrete inputs," IEEE Trans. Wirel. Commun., vol. 15, no. 6, pp. 4393-4407, Jun. 2016. https://doi.org/10.1109/TWC.2016.2540638
  16. C.-H. Chang, R. Y. Chang, and F.-T Chien, "Energy-assisted information detection for simultaneous wireless information and power transfer: Performance analysis and case studies," IEEE Trans. Sign. and Inf. Pro. over Net., vol. 2, no. 2, pp. 149-159, Jun. 2016. https://doi.org/10.1109/TSIPN.2016.2539682
  17. K. Abdullah, S. S. Mahmoud, and Z. M. Hussain, "Performance analysis of an optimal circular 16-QAM for wavelet based OFDM systems," Int. J. Commun., Netw. Syst. Sci., vol. 2, pp. 836-844, 2009.
  18. T. Cover and J. Thomas, Elements of Information Theory, Wiley, 1991.
  19. T. Paing, J. Shin, R. Zane, and Z. Popovic, "Resistor emulation approach to low-power RF energy harvesting," IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1494-1501, May 2008. https://doi.org/10.1109/TPEL.2008.921167
  20. J. A. G. Akkermans, M. C. V. Beurden, G. J. N. Doodeman, and H. J. Visser, "Analytical models for low-power rectenna design," IEEE Ant. Wirel. Propag. Lett., vol. 4, no. 1, pp. 187-190, Jun. 2005. https://doi.org/10.1109/LAWP.2005.850798
  21. Z. Popovic, "Cut the cord: Low-power far-field wireless powering for wireless sensors," IEEE Microw. Mag., vol. 14, no. 2, pp. 55-62, Mar. 2013. https://doi.org/10.1109/MMM.2012.2234638