DOI QR코드

DOI QR Code

How to Derive the Autonomous Driving Function Level of Unmanned Ground Vehicles - Focusing on Defense Robots -

무인지상차량의 자율주행 기능수준 도출 방법 - 국방로봇을 중심으로 -

  • Kim, Yull-Hui (Institute of Defense Acquisition Program, KwangWoon University) ;
  • Choi, Yong-Hoon (KwangWoon University's Division of Robotics) ;
  • Kim, Jin-Oh (KwangWoon University's Division of Robotics)
  • Received : 2016.11.11
  • Accepted : 2017.01.12
  • Published : 2017.01.31

Abstract

This paper is a study on the method to derive the functional level required for autonomous unmanned ground vehicle, one of the defense robots. Conventional weapon systems are not significantly affected by the operating environment, while defense robots exhibit different performance depending on the operating environment, even if they are on the same platform. If the performance of defense robot is different depending on operational environment, results of mission performance will be vary significantly. Therefore, it is necessary to clarify the level of function required by the military in order to research and develop most optimal defense robots. In this thesis, we propose a method to derive the required function level of unmanned ground vehicles, focusing on autonomous driving, one of the most vital functions of defense robots. Our results showed that the autonomous driving function depending intervention levels and evaluated functional sensitivity for autonomous driving of the unmanned vehicle using climate and topography as variables.

본 논문은 국방로봇의 하나인 무인지상차량이 자율주행 시 요구되는 기능수준을 도출하기 위한 방법에 대한 연구이다. 기존의 무기체계는 운용환경에 크게 영향을 받지 않는 반면 국방로봇은 동일한 플랫폼이라 할지라도 운용환경 변화에 따라 다른 성능이 표출된다. 만약 운용제대에 따라 무기체계인 국방로봇의 성능이 각각 다르게 발현된다면 임무수행의 결과는 달라질 것이다. 그러므로 소요군은 국방로봇에 요구하는 기능의 수준을 명확히 도출해야 최적의 국방로봇을 연구개발 할 수 있다. 본 논문에서는 국방로봇의 주요 기능 중 하나인 자율주행을 중심으로 하여 무인지상차량의 요구기능수준을 도출하는 방법을 제시하였다. 소요군 내 각 운용제대별로 무인지상차량이 자율주행 시 요구되는 기능의 수준을 평가 할 수 있는 문항과 운용자의 개입정도에 따른 자율주행 기능의 요구수준을 나타내었으며, 더불어 여러 운용환경에 따른 변수 중에서 지상 환경에 대한 수준을 제시하였다.

Keywords

References

  1. P.-S. Kim, "Technology and development trends related to human-friendly emotional robots" J. KICS, vol. 33, no. 8, p. 19, Jul. 2016.
  2. Defense Acquisition Program Administration, Defense unmanned robot technology: Defense unmanned robot technology development strategy, Visual Infra. Corp., pp. 13-16. 2013.
  3. Y. Choi, "Advanced advanced military capability building : Unmanned weapon system construction and operation strategy," National Security research series, vol. 2 no. 2, p. 251, Mar. 2014.
  4. J.-O. Kim, 'Social demand' raises the robot industry(2015), Retrieved Nov. 14, 2016 from http://www.dt.co.kr/contents.html?article_no=2015070802102351607001
  5. SAE, Automated driving level of driving automation are defined in new SAE International Standard J3016 (2014), Retrieved Nov. 10, 2016, from http://www.sae.org/servlets/pressRoom?OBJECT_TYPE=PressReleases&PAGE=showRelease&RELEASE_ ID=2715
  6. NIST, Autonomy Levels For Unmanned Systems (2010), Retrieved Dec. 21, 2016, from https://www.nist.gov/sites/default/files/documents/el/isd/ks/ALFUS-BG.pdf. pp
  7. B. Lee, "Trends and prospects of autonomous vehicle technology development at home and abroad," J. KICS, vol. 33, no. 4, p. 20, Jul. 2016.
  8. Eom, Hong Seob "A design methodology of Infantry platoon using combat robots based on the combat effectiveness" Kwangwoon University Graduate School, doctoral thesis, pp. pp.28-31, 2016
  9. H. S. Kim and K. J. Park, "A study on the defense IT survey and the acquisition method of IT technology" in Proc. KICS Winter Conf., p. 495, Pyoungchang, Korea, Jan. 2014.

Cited by

  1. Frame Contest of Foreign Policy: Who Influences Whom in South Korea? vol.33, pp.1, 2018, https://doi.org/10.1111/pafo.12111
  2. 영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구 vol.27, pp.2, 2017, https://doi.org/10.9709/jkss.2018.27.2.001
  3. 로봇 운용성 시뮬레이터(ROSim)의 군사로봇 운용성 평가에 실험적 적용 연구 vol.13, pp.3, 2017, https://doi.org/10.7746/jkros.2018.13.3.151
  4. 무인정찰 탱크로봇에 대한 해킹 공격 및 취약점 분석에 관한 연구 vol.24, pp.9, 2017, https://doi.org/10.6109/jkiice.2020.24.9.1187