DOI QR코드

DOI QR Code

이동통신망에서 저지연 상향링크 전송 기법

Low Latency Uplink Transmission Scheme in Mobile Communication Networks

  • Bae, Duck-Hyun (LG Electronics) ;
  • Lee, Hyun-Suk (Yonsei University, Department of Electrical and Electronic Engineering) ;
  • Lee, Jang-Won (Yonsei University, Department of Electrical and Electronic Engineering)
  • 투고 : 2016.06.21
  • 심사 : 2016.11.10
  • 발행 : 2017.01.31

초록

현재 사용되고 있는 LTE/LTE-A 이동통신망의 성능은 일반적인 무선 통신 서비스를 제공하는데 충분히 높은 대역폭과 낮은 지연시간을 제공하고 있지만, 차세대 이동통신망의 주요 서비스가 될 가상현실, 원격 제어 등의 초저지연 서비스를 지원하기 위해서는 수 ms 수준의 낮은 지연시간이 필요하다. 그러나 LTE/LTE-A 시스템에서의 상향링크 전송은 단말이 전송에 필요한 무선자원을 획득하기 위해 기지국으로부터 자원을 할당받는 스케줄링 승인 과정이 선행되어야 한다. 이 과정은 고정적인 지연시간을 가져오고, 상향링크 전송에서 낮은 지연시간을 달성하는데 걸림돌이 된다. 따라서 본 논문에서는 이러한 스케줄링 승인 과정으로 인해 발생하는 지연시간을 줄이기 위해 새로운 상향링크 전송 방법인 Cut-in 상향링크 전송방법을 제안한다. 제안하는 상향링크 전송방법의 검증을 위해 모의실험을 수행하였으며, 이 결과를 통하여 제안하는 상향링크 전송방법이 기존 LTE/LTE-A 상향링크 전송 방법보다 낮은 지연시간을 발생시킴을 보인다.

Even though current LTE/LTE-A mobile networks provide enough high data rate and low latency to support conventional wireless services, to support ultra-low delay services, such as virtual reality and remote control, in the next generation mobile communication network, it is required to provide very low delay about several ms. However, in the uplink transmission of the LTE/LTE-A system, the process of scheduling grant is required to obtain uplink resources for uplink transmission from the eNB. The process of granting uplink resources from eNB brings additional fixed latency, which is one of the critical obstacles to achieve low delay in uplink transmissions. Thus, in this paper, we propose a novel uplink transmission scheme called Cut-in uplink transmission, to reduce uplink latency. We provide the performance of the proposed uplink transmission scheme through simulations and show the proposed uplink transmission scheme provides lower uplink transmission delay than conventional uplink transmission scheme in LTE/LTE-A mobile networks.

키워드

참고문헌

  1. D.-H. Bae, H.-S. Lee, and J.-W. Lee, "Low latency uplink transmission," in Proc. Int. Conf. Electron. Inform. Commun (ICEIC), 2017.
  2. Huawei, 5G : A technology vision, Huawei, White paper, pp. 1-16, 2013.
  3. G. Fettweis, "The tactile internet: Applications and challenges," IEEE Veh. Technol. Mag., vol. 9, no. 1, pp. 64-70, Mar. 2014. https://doi.org/10.1109/MVT.2013.2295069
  4. H. S. Seo, J. S. Jung, and S. S. Lee, "Scenario and network performance evaluation for a do not pass warning service based on vehicle-to-vehicle communications," J. KICS, vol. 38, no. 3, pp. 227-232, Mar. 2013.
  5. 3GPP, Evolved universal terrestrial radio access (E-UTRA); medium access control (MAC) protocol specification, TS 36.321, Sept. 2014.
  6. J. Brown and J. Khan, "A predictive resource allocation algorithm in the LTE uplink for event based M2M applications," IEEE Trans. Mob. Comput., vol. 14, no. 12, pp. 2433-2446, Dec. 2015. https://doi.org/10.1109/TMC.2015.2398447
  7. K. D. Lee, S. Kim, and B. Yi, "Throughput comparison of random access methods for M2M service over LTE networks," in Proc. IEEE Globecom Workshops (IEEE GC Wkshps), pp. 373-377, 2011.
  8. K. Au, L. Zhang, H. Nikopour, E. Yi, and A. Bayesteh, "Uplink contention-based SCMA for 5G radio access," in Proc. IEEE Globecom Workshops (IEEE GC Wkshps), pp. 900-905, 2014.
  9. 3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA); Study on latency reduction techniques for LTE (Release 14), TR 36.881, Jun. 2016.
  10. H. Tran, M. Hasegawa, Y. Murata, and H. Harada, "Representation of user satisfaction and fairness evaluation for user-centric dynamic spectrum access," in Proc. IEEE Int. Symp. Personal, Indoor, Mobile Radio Commun. (IEEE PIMRC), pp. 838-842, May 2009.
  11. S. W. Jeon and W. Y. Shin, "Dynamic opportunistic interference alignment for random-access small-cell networks," J. KICS, vol. 39, no. 11, pp. 675-681, Nov. 2014.
  12. Y. Chen and W. Wang, "Machine-to-machine communication in LTE-A," in Proc. IEEE Veh. Technol. Conf. (IEEE VTC-Fall), pp. 1-4, Sept. 2010.
  13. K. Zhou, N. Nikaein, R. Knopp, and C. Bonnet, "Contention based access for machine-type communications over LTE," in Proc. IEEE Veh. Technol. Conf. (IEEE VTC-Spring), pp. 1-5, May 2012.
  14. 3GPP, Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); overall description; stage 2, TS 36.300, Sept. 2015.
  15. Y. S. Lee, J. S. Lee, J. S. Lim, H. W. Park, and H. J. Noh, "Multiple slot reservation for rapid data traffic transmission in the satellite random access channel," J. KICS, vol. 40, no. 10, Oct. 2015.
  16. N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier, C. Bonnet, D. Nussbaum, and R. Ghaddab, "OpenAirInterface 4G: an open LTE network in a PC," in Proc. Int. Conf. Mobile Comput. Netw. (MobiCom), Sept. 2014.
  17. I. Alyafawi, E. Schiller, T. Braun, D. Dimitrova, A. Gomes, and N. Nikaein, "Critical issues of centralized and cloudified LTE-FDD radio access networks," in Proc. IEEE Int. Conf. Commun. (IEEE ICC), pp. 5523-5528, June 2015.
  18. NGMN Alliance, NGMN radio access performance evaluation methodology, NGMN, White paper, pp. 1-37, Jan. 2008.
  19. H. K. Choi and J. O. Limb, "A behavioral model of web traffic," in Proc. IEEE Int. Conf. Network Protocols (IEEE ICNP), pp. 327-334, Oct. 1999.
  20. G. Piro, N. Baldo, and M. Miozzo, "An LTE module for the Ns-3 network simulator," in ICST SimuTools, pp. 415-422, 2011.
  21. 3GPP, Evolved universal terrestrial radio access (E-UTRA); Physical layer procedures, TS 36.213, May 2014.
  22. K. Ramadas and R. Jain, Wimax system evaluation methodology, Wimax Forum, White paper, 2007.
  23. M. Taranetz, T. Blazek, T. Kropfreiter, M. Muller, S. Schwarz, and M. Rupp, "Runtime precoding: Enabling multipoint transmission in LTE-Advanced system-level simulations," IEEE Access, vol. 3, pp. 725-736, Jun. 2015. https://doi.org/10.1109/ACCESS.2015.2437903
  24. 3GPP, Evolved universal terrestrial radio access (E-UTRA); Further advancements for E-UTRA physical layer aspects, TS 36.814, May 2010
  25. H. Holma, and A. Toskala, LTE for UMTS: Evolution to LTE-advanced., John Wiley & Sons, 2011.