DOI QR코드

DOI QR Code

영오차 확률 기반 알고리즘의 입력 정력 정규화

Input Power Normalization of Zero-Error Probability based Algorithms

  • 투고 : 2016.06.12
  • 심사 : 2016.09.25
  • 발행 : 2017.01.31

초록

충격성 잡음 환경에서 최대 영확률 (MZEP) 알고리듬은 최소자승오차 (MSE) 기반의 알고리듬 보다 우수한 성능을 지닌다. 그리고 알고리듬 자체에 내재한 크기 조절 입력 (MCI)가 MZEP 알고리듬을 충격성 잡음으로부터 알고리듬을 안정되게 유지하는 역할을 하는 것으로 알려져 있다. 이 논문에서는 MCI 입력의 평균전력으로 MZEP 알고리듬의 스텝 사이즈를 정규화하는 방식을 제안하였다. 충격파 발생률이 0.03인 충격성 잡음하의 시뮬레이션에서 정상상태 MSE 성능 비교에서 기존 MZEP에 비해 제안한 방식이 약 2dB 정도 향상된 특성을 보인다.

The maximum zero error probability (MZEP) algorithm outperforms MSE (mean squared error)-based algorithms in impulsive noise environment. The magnitude controlled input (MCI) which is inherent in that algorithm is known to plays the role in keeping the algorithm undisturbed from impulsive noise. In this paper, a new approach to normalize the step size of the MZEP with average power of the MCI is proposed. In the simulation under impulsive noise with the impulse incident rate of 0.03, the performance enhancement in steady state MSE of the proposed algorithm, compared to the MZEP, is shown to be by about 2 dB.

키워드

참고문헌

  1. Y. Cho, H. Yu, B. Kim, J. Cho, J. Kim, J. Lee, and H. Park, "Proposal of optimum equalizer hardware architecture for cable modem and analysis of various LMS algorithms," J. KICS, vol. 27, pp. 150-159, Feb. 2002.
  2. L. Bharani and P. Radhika, "FPGA implementation of optimal step size NLMS algorithm and its performance analysis," IJRET, vol. 2, pp. 885-890, Jul. 2013. https://doi.org/10.15623/ijret.2013.0205027
  3. S. Haykin, Adaptive filter theory, 4th Ed., PrenticeHall, Upper Saddle River, 2001.
  4. R. Chinaboina, D. Ramkiran, H. Khan, M. Usha, B. Madhav, K. Srinivas, and G. Ganesh, "Adaptive algorithms for acoustic echo cancellation in speech processing," IJRRAS, vol. 7, pp. 38-42, Apr. 2011.
  5. N. Kim, K. Jung, and L. Yang, "Maximization of zero-error probability for adaptive channel equalization," J. Commun. Networks(JCN), vol. 12, pp. 459-465, Oct. 2010. https://doi.org/10.1109/JCN.2010.6388491
  6. N. Kim, "Decision feedback equalizer based on maximization of zero-error probability," J. KICS, vol. 36, pp. 516-521, Aug. 2011. https://doi.org/10.7840/KICS.2011.36C.8.516
  7. N. Kim, "Efficient adaptive algorithms based on zero-error probability maximization," J. KICS, vol. 39A, pp. 237-243, May 2014. https://doi.org/10.7840/kics.2014.39A.5.237
  8. N. Kim and G. Lee, "Optimum conditions of adaptive equalizers based on zero-error probability," J. KICS, vol. 40, pp. 1865-1870, Oct. 2015. https://doi.org/10.7840/kics.2015.40.10.1865
  9. I. Santamaria, P. Pokharel, and J. Principe, "Generalized correlation function: definition, properties, and application to blind equalization," IEEE Trans. Sign. Process., vol. 54, pp. 2187-2197, Jun. 2006. https://doi.org/10.1109/TSP.2006.872524
  10. J. Proakis, Digital Communications, 2nd Ed., McGraw-Hill, 1989.