References
- Andersson, A. and G. Siman. 1991. Levels of Cd and some other trace elements in soils and crops as influenced by lime and fertilizer level. Acta Agric, Scand. 41(1):3-11. https://doi.org/10.1080/00015129109438579
- Angelova, V., R. Ivanova, V. Delibaltova, and K. Ivanov. 2004. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crops Prod. 19(3):197-205. https://doi.org/10.1016/j.indcrop.2003.10.001
- Antoniadis, V. and B.J. Alloway. 2002. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ Pollut. 117:515-521. https://doi.org/10.1016/S0269-7491(01)00172-5
- Beesley, L., E. Moreno-Jimenez, and J.L. Gomez-Eyles. 2010. Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ pollut. 158:2282-2287. https://doi.org/10.1016/j.envpol.2010.02.003
- Bolan, N.S., D.C. Adriano, P. Duraisamy, and A. Mani. 2003a. Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition. Plant Soil. 256:231-241. https://doi.org/10.1023/A:1026288021059
- Bolan, N.S., D.C. Adriano, P.A. Mani, and A. Duraisamy. 2003b. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant Soil. 251(2):187-198. https://doi.org/10.1023/A:1023037706905
- Brown, S.L., R.L. Chaney, A.J. Scott, and J.A. Ryan. 1998. The phytoavailability of cadmium to lettuce in long-term biosolid-amended soil. J Environ Qual. 27:1071-1078.
- Fassler, E., B.H. Robinson, W. Stauffer, S.K. Gupta, A. Papritz, and R. Schulin. 2010. Phytomanagement of metalcontaminated agricultural land using sunflower, maize and tobacco. Agric. Ecosyst. Environ. 136(1):49-58. https://doi.org/10.1016/j.agee.2009.11.007
- Gray, C.W., R.G. McLaren, A.H.C. Roberts, and L.M. Condron. 1999. Effect of soil pH on cadmium phytoavailability in some New Zealand soils. N. Z. J. Crop Hortic. Sci. 27:169-179. https://doi.org/10.1080/01140671.1999.9514093
- Kashem, M.A. and B.R. Singh. 2001. Matal availability in contaminated soil: II. Uptake of Cd, Ni, and Zn in rice plants grown under flooded culture with organic matter addition. Nutr Cycl Agroecosys. 61:257-266. https://doi.org/10.1023/A:1013724521349
- Koo, B.J. and D.Y. Chung. 2005. Effect of biosolids on heavy metal bioavailability and organic acid production in rhizpsphere of Zea mays L. Korean J. Soil Sci. Fert. 38(4):173-179.
- Kreutzer, K. 1995. Effects of forest liming on soil processes. Plant Soil. 168-169:447-470. https://doi.org/10.1007/BF00029358
- Kumar, R.R., B.J. Park, and J.Y. Cho. 2013. Application and Environmental Risks of Livestock Manure. J Korean Soc Appl Biol Chem. 56:497-503. https://doi.org/10.1007/s13765-013-3184-8
- Liu, L.N., H.S. Chen, P. Cai, W. Liang, and Q.Y. Huang. 2009. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J. Hazard Mater. 163:563-567. https://doi.org/10.1016/j.jhazmat.2008.07.004
- Marchiol, L., G. Fellet, D. Perosa, and G. Zerbi. 2007. Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem. 45(5):379-387. https://doi.org/10.1016/j.plaphy.2007.03.018
- McBride, M.B. 1994. Environmental chemistry of soils, Chapter 9. Trace and toxic elements in soils, pp. 308-341, Oxford University Press, New York/Oxford, US government.
- Merrington, G. and C. Madden. 2000. Change in cadmium and zinc phytoavailability in agricultural soil after amendment with papermill sludge and biosolids. Commun Soil Sci Plant Anal. 31:759-776. https://doi.org/10.1080/00103620009370475
- Naidu, R., N.S. Bolan, R.S. Kookana, and K.G. Tiller. 1994. Ionic strength and pH effects on the adsorption of cadmium and the surface charge of soils. Eur J Soil Sci. 45:419-429. https://doi.org/10.1111/j.1365-2389.1994.tb00527.x
- Neugschwandtner, R.W., P. Tlustos, M. Komarek, and J. Szakova. 2008. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma. 144(3):446-454. https://doi.org/10.1016/j.geoderma.2007.11.021
- Sparks, D.L. 2003. Environmental Soil Chemistry. Academic Press, SD, USA.
- Srivastava, S., S. Sounderajan, A. Udas, and P. Suprasanna. 2014. Effect of combinations of aquatic plants (Hydrilla, Ceratophyllum, Eichhornia, Lemna and Wolffia) on arsenic removal in field conditions. Ecol Eng. 73:297-301. https://doi.org/10.1016/j.ecoleng.2014.09.029
- Vamerali, T., M. Bandiera, P. Lucchini, N.M. Dickinson, and G. Mosca. 2014. Long-term phytomanagement of metal-contaminated land with field crops: integrated remediation and biofortification. Eur J Agron. 53:56-66. https://doi.org/10.1016/j.eja.2013.11.008