DOI QR코드

DOI QR Code

Individual Presence-and-Preference-Based Local Intelligent Service System and Mobile Edge Computing

개인 프레즌스-선호 기반 지능형 로컬 서비스 시스템과 모바일 엣지 컴퓨팅 환경에서의 적용 방안

  • Kim, Kilhwan (Sangmyung University Department of Managment Engineering) ;
  • Jang, Jin-San (Sangmyung University Department of Managment Engineering) ;
  • Keum, Changsup (ETRI Hyper-connected Communication Research Laboratory) ;
  • Chung, Ki-Sook (ETRI Hyper-connected Communication Research Laboratory)
  • Received : 2016.12.04
  • Accepted : 2017.01.16
  • Published : 2017.02.28

Abstract

Local intelligent services aim at controlling local services such as cooling or lightening services in a certain local area, using Internet-of-Things (IoT) sensor data in the area. As the IoT paradigm has evolved, local intelligent services have gained increasing attention. However, most of the local intelligent service mechanism proposed so far do not directly take the users' presence and service preference information into account for controlling local services. This study proposes an individual presence-and-preference-based local service system (IPP-LISS). We present a intelligent service control algorithm and implement a prototype system of IPP-LISS. Typically, the intelligence part of IPP-LISS including the prediction models, is generated on remote server in the cloud because of their compute-intense aspect. However, this can cause huge data traffic between IoT devices and servers in the cloud. The emerging mobile edge computing technology will be a promising solution of this challenge of IPP-LISS. In this paper, we implement IPP-LISS in the cloud, and then, based on the implementation result, we discuss applying the mobile edge computing technology to the IPP-LISS application.

IoT 환경이 심화됨에 따라 집, 사무실 등 특정 지역에 설치된 센서 정보를 활용하여 지역내 냉난방, 조명 등의 서비스를 자동 조절하는 지능형 로컬 서비스에 대한 관심이 커지고 있다. 그런데 지금까지의 IoT 기반 지능형 로컬 서비스는 지역 내 사용자의 프레즌스와 서비스 선호도를 간접적인 방식으로 반영함으로써 실제 재실중인 사용자의 선호도를 왜곡하여 반영하는 문제가 발생한다. 본 연구에서는 이러한 문제점을 해결하기 위해 개별 사용자의 프레즌스 및 선호도 정보를 기반으로 한 지능형 로컬 서비스 제어 방식을 제안하고 이를 프로토타입 으로 구현한 결과를 제시한다. 아울러 대부분의 지능형 로컬 서비스를 위한 복잡한 예측 모형의 생성은 주로 클라우드 상의 서버에서 수행되어 왔다. 그러나 이러한 방식은 IoT 기기와 클라우드 간의 대량의 데이터 전송을 발생시킨다. 모바일 엣지 컴퓨팅 환경은 지능형 로컬 서비스 제어 시스템의 이러한 문제점을 해결할 수 있는 해결책이 될 수 있다. 본 연구에서는 클라우드 환경에서 개인 프레즌스-선호 기반 지능형 로컬 서비스 시스템을 구현한 후, 구현 결과를 기반으로 모바일 엣지 컴퓨팅 환경에 적용하는 방안을 제시한다.

Keywords

References

  1. M. T. Beck, M. Werner, S. Feld, and S. Schimper, "Mobile edge computing: A taxonomy," in Proc. 6th Int. Conf. Aadvances in Future Internet, 2014.
  2. ETSI, Mobile-edge computing-Introductory technical white paper, ETSI White Paper, 2014.
  3. A. Ahmed and E. Ahmed, "A survey on mobile edge computing," in Proc. 10th IEEE Int. Conf. Intell. Syst. and Contr., Coimbatore, India, 2016.
  4. C.-W. Tsai, C.-F. Lai, M.-C. Chiang, and L. T. Yang, "Data mining for internet of things: A survey," IEEE Commun. Surveys & Tuts., vol. 16, no. 1, pp. 77-97, 2014. https://doi.org/10.1109/SURV.2013.103013.00206
  5. S. D. T. Kelly, N. K. Suryadevara, and S. C. Mukhopadhyay, "Towards the implementation of iot for environmental condition monitoring in homes," Sensors J. IEEE, vol. 13, no. 10, pp. 3846-3853, 2013. https://doi.org/10.1109/JSEN.2013.2263379
  6. Y. Zeng, Z. Zhang, and A. Kusiak, "Predictive modeling and optimization of a multi-zone hvac system with data mining and firefly algorithms," Energy, vol. 86, pp. 393-402, 2015. https://doi.org/10.1016/j.energy.2015.04.045
  7. H.-C. Jo, S. Kim, and S.-K. Joo, "Smart heating and air conditioning scheduling method incorporating customer convenience for home energy management system," IEEE Trans. Consumer Electron., vol. 59, no. 2, pp. 316-322, 2013. https://doi.org/10.1109/TCE.2013.6531112
  8. M. M. Tehrani, Y. Beauregard, M. Rioux, J. P. Kenne, and R. Ouellet, A predictive preference model for maintenance of a heating ventilating and air conditioning system, IFAC-PapersOnLine, vol. 48, no. 3, pp. 130-135, 2015.
  9. G. Zucker, J. Malinao, U. Habib, T. Leber, A. Preisler, and F. Judex, "Improving energy efficiency of buildings using data mining technologies," IEEE ISIE, pp. 2664-2669, 2014.
  10. M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, "The case for vm-based cloudlets in mobile computing," IEEE Pervasive Comput., vol. 8, no. 4, pp. 14-23, 2009. https://doi.org/10.1109/MPRV.2009.82
  11. K. Habak, M. Ammar, K. A. Harras, and E. Zegura, "Femto clouds: Leveraging mobile devices to provide cloud service at the edge," in 2015 IEEE 8th Int. Conf. Cloud Comput., pp. 9-16, 2015.
  12. S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, "Replisom: Disciplined tiny memory replication for massive IoT devices in LTE edge cloud," IEEE Internet of Things J., vol. 3, no. 3, pp. 327-338, 2016. https://doi.org/10.1109/JIOT.2015.2497263
  13. M. T. Beck, S. Feld, A. Fichtner, C. Linnhoff-Popien, and T. Schimper, "Me-volte: Network functions for energy-efficient video transcoding at the mobile edge," in 18th Int. Conf. Intell. Next Generation Netw., pp. 38-44, 2015.
  14. X. Chen, L. Jiao, W. Li, and X. Fu, "Efficient multi-user computation offloading for mobile-edge cloud computing," IEEE/ACM Trans. Networking, vol. 24, no. 5, pp. 2795-2808, 2015. https://doi.org/10.1109/TNET.2015.2487344
  15. T. Guettari, "Thermal signal analysis in smart home environment for detecting a human presence," Int. Conf. Advanced Technol. for Sign. and Image Process., pp. 334-339, 2014.
  16. S. Lee, S. Y. Jeong, S. J. Kang, and W. J. Lee, "Design and implementation of IoT chatting service based on indoor location," J. KICS, vol. 39, no. 10, pp. 920-929, 2014.
  17. S. D'Oca and T. Hong, "A data-mining approach to discover patterns of window opening and closing behavior in offices," Build. and Environ., vol. 82, pp. 726-739, 2014. https://doi.org/10.1016/j.buildenv.2014.10.021
  18. H. K. Jung, S. Jung, D. H. Lee, S. Q. Lee, and J.-H. Kim, "Wireless caching algorithm based on user's context in smallcell environments," J. KICS, vol. 41, no. 7, pp. 789-798, 2016. https://doi.org/10.7840/kics.2016.41.7.789
  19. S. Y. Jeon, J. H. Ahn, and T.-J. Lee, "Broadcast data delivery in iot networks with packet loss and energy constraint," J. KICS, vol. 41, no. 2, pp. 269-276, 2016. https://doi.org/10.7840/kics.2016.41.2.269
  20. ASHRAE, "Standard 55-thermal environmental conditions for human occupancy," ASHRAE Standard, vol. ASHRAE-55, 2013.
  21. E. K. Chong and S. H. Zak, An introduction to optimization, vol. 76. John Wiley & Sons, 2013.
  22. M. Kuhn and K. Johnson, Applied predictive modeling, Springer, 2013.
  23. E.-G. Talbi, Metaheuristics: From design to implementation, John Wiley & Sons, 2009.

Cited by

  1. A Study on the Critical Factors Affecting Use Intention of Multi-access Edge Computing(MEC) vol.20, pp.3, 2017, https://doi.org/10.9728/dcs.2019.20.3.613