DOI QR코드

DOI QR Code

MEC 환경에서의 Social Context를 이용한 트래픽 오프로딩 알고리즘

Traffic Offloading Algorithm Using Social Context in MEC Environment

  • Cheon, Hye-Rim (Ajou University Department of Elecrical and Computer Engineering) ;
  • Lee, Seung-Que (Electronics and Telecommunications Research Institute) ;
  • Kim, Jae-Hyun (Ajou University Department of Elecrical and Computer Engineering)
  • 투고 : 2016.12.02
  • 심사 : 2017.01.10
  • 발행 : 2017.02.28

초록

트래픽 오프로딩은 폭발적으로 증가하는 모바일 트래픽에 대응하기 위한 유망 솔루션이다. 오프로딩 방법 중, LIPA/SIPTO 오프로딩에서는 애플리케이션의 QoS 요구사항을 만족하면서 트래픽을 오프로딩할 수 있다. 또한, SNS로 인한 많은 트래픽때문에 social context를 이용한 트래픽 오프로딩이 필요하다. 그러므로, 본 논문에서는 social context를 이용하여 트래픽을 오프로딩하는 LIPA/SIPTO 오프로딩 알고리즘을 제안한다. 먼저, 애플리케이션 인기도를 social context로 이용하여 애플리케이션 선택확률을 정의한다. 그 다음, effective data rate 관점에서 소형셀 사용자의 QoS를 최대화하는 최적의 오프로딩 weighting factor를 찾는다. 마지막으로, 애플리케이션 선택확률과 오프로딩 weighting factor를 기반으로 각 애플리케이션의 오프로딩 비율을 정한다. 성능분석 결과, 제안한 알고리즘의 오프로딩 비율이 기존 알고리즘의 약 46%임에도 불구하고, 제안한 알고리즘의 effective data rate achievement ratio 값이 기존 알고리즘과 비슷한 것을 확인하였다.

Traffic offloading is a promising solution to solve the explosive growth of mobile traffic. One of offloading schemes, in LIPA/SIPTO(Local IP Access and Selected IP Traffic Offload) offloading, we can offload mobile traffic that can satisfy QoS requirement for application. In addition, it is necessary for traffic offloading using social context due to large traffic from SNS. Thus, we propose the LIPA/SIPTO offloading algorithm using social context. We define the application selection probability using social context, the application popularity. Then, we find the optimal offloading weighting factor to maximize the QoS(Quality of Service) of small cell users in term of effective data rate. Finally, we determine the offloading ratio by this application selection probability and optimal offloading weighting factor. By performance analysis, the effective data rate achievement ratio of the proposed algorithm is similar with the conventional one although the total offloading ratio of the proposed algorithm is about 46 percent of the conventional one.

키워드

참고문헌

  1. Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015- 2020, Feb. 2016.
  2. Mobile Data Traffic Surpasses Voice(2010), Retrieved April 13, 2016, from http://www.cellularnews.com/story/42543.php,
  3. M. Cha, H. Kwak, P. Rodriguez, Y. Y. Ahn, and S. Moon, "I tube, you tube, everybody tubes: Analyzing the world's largest user generated content video system," in Proc. 7th ACM SIGCOMM IMC, pp. 1-14. San Diego, CA, USA, Oct. 2007,
  4. H. M. Kim, H. N. Lee, and S. K. Kim, "Grouping resource allocation scheme for D2D communications," J. KICS, vol. 40, no. 8, pp. 1532-1541, Aug. 2015 https://doi.org/10.7840/kics.2015.40.8.1532
  5. A. Aijaz, H. Aghvami, and M. Amani, "A survey on mobile data offloading: Technical and business perspectives," IEEE Wirel. Commun., vol. 20, no. 2, pp. 104-112, Apr. 2013. https://doi.org/10.1109/MWC.2013.6507401
  6. 3GPP TR 23.829 V10.0.1, 3GPP technical specification group services and system aspects; local IP access and selected IP traffic offload, Oct. 2011.
  7. S. Andreev, A. Pyattaev, K. Johnson, O. Galinina, and Y. Koucheryavy, "Cellular traffic offloading onto network-assisted device-to-device connections," IEEE Commun. Mag., vol. 52, no. 4, pp. 20-31, Apr. 2014. https://doi.org/10.1109/MCOM.2014.6807943
  8. Z. Wang and V. W. S. Wong, "A novel D2D data offloading scheme for LTE networks," in Proc. IEEE ICC 2015, pp. 3107-3112, London, UK, Jun. 2015
  9. K. Lee, J. Lee, and Y. Yi, "Mobile data offloading: How much can WiFi deliver?," IEEE/ACM Trans. Networking, vol. 21, no. 2, pp. 536-550, Apr. 2013. https://doi.org/10.1109/TNET.2012.2218122
  10. A. Y. Ding, B. Han, Y. Xiao, P. Hui, A. Srinivasan, M. Kojo, and S. Tarkoma, "Enabling energy-aware collaborative mobile data offloading for smartphones," in Proc. SECON 2013, pp. 487-495, New Orleans, USA, Jun. 2013
  11. C. S. Yang and C. G. Kang, "QoS-Oriented user association in HetNet with a backhaul constraint," J. KICS, vol. 39, no. 10, pp. 654- 663, Oct. 2014.
  12. L. Ma and W. Li, "Traffic offload mechanism in EPC based on bearer type," in Proc. WiCOM 2011, Wuhan, China, Sept. 2011.
  13. K. Samdanis, T. Taleb, and S. Schmid, "Traffic offload enhancements for eUTRAN," IEEE Commun. Surveys & Tuts., vol. 14, no. 3, pp. 884-896, 3rd quarter, 2012.
  14. ETSI, Mobile-edge computing-introductory technical white paper, Sept. 2014.
  15. Small Cell Forum Release 7.0 Document 154.07.02, Virtualization in small cell networks, Jun. 2015.
  16. H. K. Jung, S. Jung, D. H. Lee, S. Q. Lee, and J. H. Kim, "Wireless caching algorithm based on user's context in smallcell environments," J. KICS, vol. 41, no. 7, pp. 789-798, Jul. 2016 https://doi.org/10.7840/kics.2016.41.7.789
  17. K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan, and Y Zhang, "Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks," IEEE Access, vol. 4, pp. 5896-5907, 2016. https://doi.org/10.1109/ACCESS.2016.2597169
  18. T. L. Griffiths and Z. Ghahramani, "The indian buffet process: An introduction and review," J. Mach. Learn. Res., vol. 12, no. 4, pp. 1185-1224, Apr. 2011.
  19. H. Tanaka, S. Tsukao, D. Yamashita, T. Niimura, and R. Yokoyama, "Multiple criteria assessment of substation conditions by pair-wise comparison of analytic hierarchy process," IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 3017-3023, Oct. 2010. https://doi.org/10.1109/TPWRD.2010.2048437
  20. H. R. Cheon, S. Q. Lee, and J. H. Kim, "New LIPA/SIPTO offloading algorithm by network condition and application QoS requirement," in Proc. ICTC 2015, pp. 191-196, Jeju Island, Korea, Oct. 2015.
  21. B. Soelistijanto and M. Howarth, "Traffic distribution and network capacity analysis in social opportunistic networks," in Proc. WiMob 2012, pp. 823-830, Barcelona, Spain, Oct. 2012.
  22. S. H. Kang and J. H. Kim, "QoS-aware path selection for multi-homed mobile terminals in heterogeneous wireless networks," in Proc. CCNC 2010, pp. 1-2, Las Vegas, Nevada, USA, Jan. 2010.
  23. Cisco, Global Internet Speed Test (GIST) for iPhone, BlackBerry and Android, Retrieved April 13, 2016, from http://gistdata.ciscovni.com/
  24. 3GPP TS 23.203 V12.6.0, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Policy and charging control architecture(Release 12), Sept. 2014.