DOI QR코드

DOI QR Code

공간 태그된 트윗을 사용한 밀도 기반 관심지점 경계선 추정

Density-Based Estimation of POI Boundaries Using Geo-Tagged Tweets

  • Shin, Won-Yong (Dankook University, Department of Computer Science and Engineering) ;
  • Vu, Dung D. (Dankook University, Department of Computer Science and Engineering)
  • 투고 : 2017.01.08
  • 심사 : 2017.02.07
  • 발행 : 2017.02.28

초록

사용자들은 그들의 관심이 관심지점 (POI: Point-of-Interest)과 관련이 있다는 사실을 언급하기 위해 위치 기반 소셜 네트워크에 체크인하거나 그들의 상태를 올리는 경향이 있다. 관심지역 (AOI: Area-of-Interest)을 찾는 기존 연구는 대부분 위치 기반 소셜 네트워크로부터 수집된 공간 태그된 사진과 함께 밀도 기반 군집화 기법을 사용하여 수행되었다. 반면, 본 연구에서는 POI 중심을 포함한 하나의 군집에 해당하는 POI 경계선을 추정하는 데에 초점을 맞춘다. 트위터 사용자들로부터의 공간 태그된 트윗을 사용하여 POI 중심으로부터 도달할 수 있는 적절한 반경을 찾음으로써 POI 경계선을 추정하는 밀도 기반 저복잡도 두 단계 방법을 소개한다. 두 단계 밀도 기반 추정을 통해 선택된 공간 태그의 convex hull로써 POI 경계선을 추정하는데, 각 단계에서 다른 크기의 반경 증가를 가정하여 진행한다. 제안한 방법은 기본 밀도 기반 군집화 방법보다 계산 복잡도 측면에서 우수한 성능을 가짐을 보인다.

Users tend to check in and post their statuses in location-based social networks (LBSNs) to describe that their interests are related to a point-of-interest (POI). While previous studies on discovering area-of-interests (AOIs) were conducted mostly on the basis of density-based clustering methods with the collection of geo-tagged photos from LBSNs, we focus on estimating a POI boundary, which corresponds to only one cluster containing its POI center. Using geo-tagged tweets recorded from Twitter users, this paper introduces a density-based low-complexity two-phase method to estimate a POI boundary by finding a suitable radius reachable from the POI center. We estimate a boundary of the POI as the convex hull of selected geo-tags through our two-phase density-based estimation, where each phase proceeds with different sizes of radius increment. It is shown that our method outperforms the conventional density-based clustering method in terms of computational complexity.

키워드

참고문헌

  1. H.-M. An, S.-K. Lee, K.-S. Sim, I.-H. Kim, S.-H. Jin, and M.-S. Kim, "Big-data traffic analysis for the campus network resource efficiency," J. KICS, vol. 40, no. 3, pp. 541-550, Mar. 2015. https://doi.org/10.7840/kics.2015.40.3.541
  2. J. W. Kim and K.-H. Park, "Personalized group recommendation using collaborative filtering and frequent pattern," J. KICS, vol. 41, no. 7 pp. 768-774, Jul. 2016. https://doi.org/10.7840/kics.2016.41.7.768
  3. Y.-H. Kim, Y.-K. Hwang, T.-G. Kang, and K.-M. Jung, "LSTM language model based Korean sentence generation," J. KICS, vol. 41, no. 5, pp. 592-601, May 2016. https://doi.org/10.7840/kics.2016.41.5.592
  4. Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. Magnenat-Thalmann, "Time-aware point-ofinterest recommendation," in 36th Proc. Int. ACM SIGIR'13, pp. 363-372, Dublin, Ireland, Jul. 2013.
  5. M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee, "Exploiting geographical influence for collaborative point-of-interest recommendation," in 34th Proc. Int. ACM SIGIR'11, pp. 325- 334, Beijing, China, Jul. 2011.
  6. J. J. Levandoski, Sarwat, A. Eldawy, and M. F. Mokbel, "LARS: A location-aware recommender system," in Proc. IEEE ICDE2012, pp. 450-461, Washington DC, USA, Apr. 2012.
  7. J.-W. Son, A.-Y. Kim, and S.-B. Park, "A location-based news article recommendation with explicit localized semantic analysis," in Proc. ACM SIGIR'13, pp. 293-302, Dublin, Ireland, Jul. 2013.
  8. J. Liu, Z. Huang, L. Chen, H.-T. Shen, and Z. Yan, "Discovering areas of interest with geo-tagged images and check-ins," in Proc. ACM MM'12, pp. 589-598, Nara, Japan, Oct. 2012.
  9. S. Kisilevich, F. Mansmann, and D. Keim, "P-DBSCAN: A density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos," in Proc. COM.Geo2010, Bethesda, MD, USA, Jun. 2010.
  10. M. Ester, H.-P. Keriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," Data Mining Knowledge Discovery, vol. 96, no. 34, pp. 226-231, 1996.
  11. S. V. Canneyt, S. Schockaert, O. V. Laere, and B. Dhoedt, "Detecting places of interest using social media," in Proc. 2012 IEEE/WIC/ACM WI-IAT'12, pp. 447-451, Macau, SAR of the People's Republic of China, Dec. 2012.
  12. A. Skovsgaard, D. Sidlauskas, and C. S. Jensen, "A clustering approach to the discovery of points of interest from geo-tagged microblog posts," in Proc. IEEE MDM'14, pp. 178-188, Brisbane, Australia, Jul. 2014.
  13. D. D. Vu, H. To, W.-Y. Shin, and C. Shahabi, "GeoSocialBound: An efficient framework for estimating social POI boundaries using spatio-textual information," in Proc. Int. ACM SIGMOD GeoRich2016, pp. 1-6, Sanfrancisco, CA, USA, Jun. 2016.
  14. S. Hahmann, R. S. Purves, and D. Burghardt, "Twitter location (sometimes) matters: Exploiting the relationship between georeferenced tweet content and nearby feature class," J. Spatial Inf. Sci., no. 9, pp. 1-36, Sept. 2014.
  15. A. Arampatzis, M. van Kreveld, I. Reinbacher, C. B. Jones, S. Vaid, P. Clough, H. Joho, and M. Sanderson, "Web-based delineation of imprecise regions," Comp. Environ. Urban Syst., vol. 30, no. 4, pp. 436-459, Jul. 2016. https://doi.org/10.1016/j.compenvurbsys.2005.08.001
  16. M. Berg, W. Meulemans, and B. Speckman, "Delineating imprecise regions via shortest-path graphs," in Proc. 19th ACM SIGSPATIAL'11, pp. 271-280, Chicago, Illinois, USA, Nov. 2011.
  17. Y. Takhteyev, A. Gruzd, and B. Wellman, "Geography of Twitter networks," Social Netw., vol. 34, no. 1, pp. 73-81, Jan. 2012. https://doi.org/10.1016/j.socnet.2011.05.006
  18. J. Julshrestha, F. Kooti, A. Nikravesh, and K. P. Gummadi, "Geographic dissection of the twitter network," in Proc. ICWSM-12, pp. 202-209, Dublin, Ireland, Jun. 2012.
  19. W.-Y. Shin, B. C. Singh, J. Cho, and A. M. Everett, "A new understanding of friendships in space: Complex networks meet Twitter," J. Inf. Sci., vol. 41, no. 6, pp. 751-764, Dec. 2015. https://doi.org/10.1177/0165551515600136
  20. A.-C. Lee, G.-E. Seo, W.-Y. Shin, D. Kim, and J. Cho, "Tweet bot detection using geo-location information," in Proc. KICS Winter Conf., pp. 1-2, Jeju Island, Korea, Jun. 2015.