DOI QR코드

DOI QR Code

A Study on the Machine Learning Model for Product Faulty Prediction in Internet of Things Environment

사물인터넷 환경에서 제품 불량 예측을 위한 기계 학습 모델에 관한 연구

  • Ku, Jin-Hee (Department of Information Communication Engineering, Mokwon University)
  • 구진희 (목원대학교 정보통신융합공학부)
  • Received : 2017.01.15
  • Accepted : 2017.02.20
  • Published : 2017.02.28

Abstract

In order to provide intelligent services without human intervention in the Internet of Things environment, it is necessary to analyze the big data generated by the IoT device and learn the normal pattern, and to predict the abnormal symptoms such as faulty or malfunction based on the learned normal pattern. The purpose of this study is to implement a machine learning model that can predict product failure by analyzing big data generated in various devices of product process. The machine learning model uses the big data analysis tool R because it needs to analyze based on existing data with a large volume. The data collected in the product process include the information about product faulty, so supervised learning model is used. As a result of the study, I classify the variables and variable conditions affecting the product failure, and proposed a prediction model for the product failure based on the decision tree. In addition, the predictive power of the model was significantly higher in the conformity and performance evaluation analysis of the model using the ROC curve.

사물인터넷 환경에서 인간의 개입 없는 지능화된 서비스를 위해서는 IoT 디바이스에서 생성되는 빅데이터로 부터 정상 패턴을 학습하고 이를 기반으로 불량, 오작동과 같은 이상 징후에 대해 예측하는 과정이 요구된다. 본 연구의 목적은 제품 공정의 다양한 기기에서 발생되는 빅데이터를 분석함으로써 제품 불량을 예측할 수 있는 기계 학습모델을 구현하는 것이다. 기계 학습 모델은 어느 정도 볼륨을 가진 기존 데이터를 기반으로 분석을 해야 하므로 빅데이터 분석도구 R을 사용하였으며, 제품 공정에서 수집된 데이터에는 제품에 대한 불량 여부가 포함되어 있으므로 지도 학습 모델을 활용하였다. 연구의 결과, 제품 불량에 영향을 주는 변수 및 변수 조건을 분류하였고, 의사결정 트리를 기반으로 제품의 불량 여부에 대한 예측 모델을 제시하였다. 또한, ROC Curve를 이용한 모델의 적합성 및 성능평가 분석에서 모델의 예측력은 상당히 높게 나타났다.

Keywords

References

  1. World Economic Forum, "The Future of Jobs-Employment, Skills and Workforce Strategy for the Fourth Industrial Revolution", January, 2016.
  2. J. R. Yun, "4th Industrial Revolution and Soft Power", TTA Journal, Vol. 167, pp. 4-7, 2016.
  3. S. Taylor, "The Internet of Things is More Than Just "Things" - Five Technology Pillars to Pay Attention To", Cisco Blogs, 2014.
  4. Future Internet Team, "US CES 2015 Trend Analysis", Internet & Security Focus, January, 2015.
  5. D. Lammers, "Fabs in the Internet of Things Era", http://blog.appliedmaterials.com, 2016. 12.
  6. GE(General Electric), Industrial Internet Insights Report, 2015.
  7. M. S. Kim, J. H. Choi, "Understanding of the Fourth Industrial Revolution and Industrial IoT․Industrial Internet", Korea Information Society Development Institute, Vol. 28, No. 12, pp. 20-26, 2016.
  8. E. H. Ji, "[Industrial IoT", Monthly Software Oriented Society, Vol. 6, 2015.
  9. Y. H. Kim, W. Y. Kim, U. M. Kim "An Efficient Method for Mining Frequent Patterns based on Weighted Support over Data Streams", Journal of the Korea Academia-Industrial cooperation Society, vol. 10, No. 8, pp. 1998-2004, 2009. https://doi.org/10.5762/KAIS.2009.10.8.1998
  10. J. K. Yang, K. M. Cheon, Y. W. Byun "Manufacturing process improvement of smart phone camera body using data mining and RSM mixture model", Proceeding of the Korea Academia-Industrial cooperation Society, May, (2015), 73-75.
  11. E. Y. Kang "A Mining-based Healthcare Multi-Agent System in Ubiquitous Environments", Journal of the Korea Academia-Industrial cooperation Society, 10, 9, (2009), 2354-2360. https://doi.org/10.5762/KAIS.2009.10.9.2354
  12. B. L. Cho, D. H. Kim "A Study on the big data processing and analysis model for the industrial accident prevention", Proceeding of the Korea Academia-Industrial cooperation Society, pp. 186-187, May, 2015.
  13. Tom M. Mitchell, Machine Learning, McGraw-Hill Science, 1997.
  14. E. J. Kim, Introduction to Artificial Intelligence, Machine Learning, and Deep Learning, Books Wiki, 2016.
  15. S. R. Jo, H. N. Sung, B. H. Ahn, "A Comparative Study on the Performance of SVM and an Artificial Neutral Network in Intrusion Detection", Journal of the Korea Academia-Industrial cooperation Society, Vol. 17, No. 2, pp. 703-711, 2016. https://doi.org/10.5762/KAIS.2016.17.2.703