DOI QR코드

DOI QR Code

A Study on Attitude Estimation of UAV Using Image Processing

영상 처리를 이용한 UAV의 자세 추정에 관한 연구

  • Paul, Quiroz (ERI, ReCAPT, Department of Aerospace & Software Engineering Gyeongsang National University) ;
  • Hyeon, Ju-Ha (ERI, ReCAPT, Department of Aerospace & Software Engineering Gyeongsang National University) ;
  • Moon, Yong-Ho (ERI, ReCAPT, Department of Aerospace & Software Engineering Gyeongsang National University) ;
  • Ha, Seok-Wun (ERI, ReCAPT, Department of Aerospace & Software Engineering Gyeongsang National University)
  • 폴 퀴로즈 (경상대학교 항공우주및소프트웨어공학 전공, 공학연구소, 항공기부품기술연구소) ;
  • 현주하 (경상대학교 항공우주및소프트웨어공학 전공, 공학연구소, 항공기부품기술연구소) ;
  • 문용호 (경상대학교 항공우주및소프트웨어공학 전공, 공학연구소, 항공기부품기술연구소) ;
  • 하석운 (경상대학교 항공우주및소프트웨어공학 전공, 공학연구소, 항공기부품기술연구소)
  • Received : 2017.09.06
  • Accepted : 2017.10.20
  • Published : 2017.10.31

Abstract

Recently, researchers are actively addressed to utilize Unmanned Aerial Vehicles(UAV) for military and industry applications. One of these applications is to trace the preceding flight when it is necessary to track the route of the suspicious reconnaissance aircraft in secret, and it is necessary to estimate the attitude of the target flight such as Roll, Yaw, and Pitch angles in each instant. In this paper, we propose a method for estimating in real time the attitude of a target aircraft using the video information that is provide by an external camera of a following aircraft. Various image processing methods such as color space division, template matching, and statistical methods such as linear regression were applied to detect and estimate key points and Euler angles. As a result of comparing the X-plane flight data with the estimated flight data through the simulation experiment, it is shown that the proposed method can be an effective method to estimate the flight attitude information of the previous flight.

최근, 군사나 산업 응용 목적으로 UAV를 활용하는 연구가 매우 고무적으로 진행되고 있다. 이들 응용 중의 한 가지는 적의 의심스러운 정찰 비행체의 비행경로를 뒤따라 은밀하게 추적할 필요가 있을 때 앞서가는 비행체를 추적하는 것으로, Roll, Yaw, Pitch와 같은 대상 비행체의 비행 자세 정보들을 매 순간마다 실시간으로 추정할 필요가 있다. 본 논문에서는 뒤따르는 비행체에 장착되어 있는 외부 카메라에서 제공하는 비디오 정보를 사용해서 대상 비행체의 자세를 실시간으로 추정할 수 있는 방법을 제시한다. 키 포인트와 오일러 각을 탐지하고 추정하기 위해서 컬러 공간 분할, 템플레이트 정합 등과 같은 여러 가지 영상 처리 방법들과 선형 회귀와 같은 통계적 방법이 적용되었다. 시뮬레이션 실험을 통해서 X-플레인 비행데이터와 추정한 비행데이터를 비교한 결과 제안하는 방법이 앞서가는 비행체의 비행 자세 정보를 추정하는데 효과적인 방법이 될 수 있음을 보여준다.

Keywords

References

  1. E. N. Barmpounakis, E. I. Vlahogianni & J. C. Golias. (2016). Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges. International Journal of Transportation Science and Technology, 5(3), 111-122. DOI : 10.1016/j.ijtst.2017.02.001
  2. J. P. Lee, J. W. Lee & K. H. Lee. (2016). A Scheme of Security Drone Convergence Service using Cam-Shift Algorithm. Journal of the Korea Convergence Society, 7(5), 29-34. DOI : 10.15207/jkcs.2016.7.5.029
  3. H. J. Mun. (2016). Countermeasure to Underlying Security Threats in IoT communication. Journal of IT Convergence Society for SMB, 6(2), 37-44. DOI : 10.22156/cs4smb.2016.6.2.037
  4. K. O. Park & J. K. Lee. (2017). A Countermeasure Technique for Attack of Reflection SSDP in Home IoT. Journal of Convergence for Information Technology, 7(2), 1-9. DOI : 10.22156/cs4smb.2017.7.2.001
  5. Y. B. Sebbane. (2016). Smart Autonomous Aircraft: Flight Control and Planning for UAV. New York: CRC Press.
  6. Y. Wang, J. Mangnus, D. Kostic, H. Nijmeijer & S. T. H. Jansen. (2011). Vehicle State Estimation Using GPS/IMU Integration. 2011 IEEE SENSORS Proceedings (pp. 28-31). USA : IEEE. DOI : 10.1109/icsens.2011.6127142
  7. K. B. Kim, G. M. Geum & C. B. Jang. (2017). Research on the Convergence of CCTV Video Information with Disaster Recognition and Real-time Crisis Response System. Journal of the Korea Convergence Society, 8(3), 15-22. DOI : 10.15207/jkcs.2017.8.3.015
  8. Laminal Research. (2017). How X_Plane Works. X-Plane. http://www.x-plane.com/desktop/how-x-plane-works/
  9. H. D. Cheng, X. H. Jiang, Y. Sun & J. Wang. (2001). Color Image Segmentation: Advances and Prospects. Pattern Recognition, 34(12), 2259-2281. DOI : 10.1016/s0031-3203(00)00149-7
  10. W. S. Hwang & M. R. Choi. (2016). Convergence Research of Low-Light Image Enhancement Method and Vehicle Recorder. Journal of the Korea Convergence Society, 7(6), 1-6. DOI : 10.15207/jkcs.2016.7.6.001
  11. J. C. Yoo & C. W. Ahn. (2013). Template Matching of Occluded Object under Low PSNR. Digital Signal Processing, 23(3), 870-878. DOI : 10.1016/j.dsp.2012.12.004
  12. L. Ding & A. Goshtasby. (2001). On the Canny Edge Detector. Pattern Recognition, 34(3), 721-725. https://doi.org/10.1016/S0031-3203(00)00023-6
  13. J. Cui, J. Xie, T. Liu, X. Guo & Z. Chen. (2014). Corners Detection on Finger Vein Images using the Improved Harris Algorithm. International Journal for Light and Electron Optics, 125(17), 4668-4671. DOI : 10.1016/j.ijleo.2014.05.026
  14. P. Mukhopadhyay & B. B. Chaudhuri. (2015). A Survey of Hough Transform. Pattern Recognition, 48(3), 993-1010. DOI : 10.1016/j.patcog.2014.08.027
  15. S. M. Ross. (2017). Introductory Statistics: Chapter 12 - Linear Regression. USA : Academic Press. 519-584.